BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bramhill J, Ross S, Ross G. Bioactive Nanocomposites for Tissue Repair and Regeneration: A Review. Int J Environ Res Public Health 2017;14:E66. [PMID: 28085054 DOI: 10.3390/ijerph14010066] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 9.4] [Reference Citation Analysis]
Number Citing Articles
1 Al-Ogaidi I, Aguilar ZP, Lay JO Jr. Development of Biodegradable/Biocompatible Nanoliposome-Encapsulated Antimicrobial Essential Oils for Topical Creams and Gels. ACS Omega 2022;7:23875-89. [PMID: 35847299 DOI: 10.1021/acsomega.2c02594] [Reference Citation Analysis]
2 Bianchi E, Vigani B, Viseras C, Ferrari F, Rossi S, Sandri G. Inorganic Nanomaterials in Tissue Engineering. Pharmaceutics 2022;14:1127. [DOI: 10.3390/pharmaceutics14061127] [Reference Citation Analysis]
3 Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022;14:1132. [DOI: 10.3390/pharmaceutics14061132] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Mallick S, Nag M, Lahiri D, Pandit S, Sarkar T, Pati S, Nirmal NP, Edinur HA, Kari ZA, Ahmad Mohd Zain MR, Ray RR. Engineered Nanotechnology: An Effective Therapeutic Platform for the Chronic Cutaneous Wound. Nanomaterials 2022;12:778. [DOI: 10.3390/nano12050778] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Lemos R, Maia FR, Reis RL, Oliveira JM. Engineering of Extracellular Matrix‐Like Biomaterials at Nano‐ and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. Advanced NanoBiomed Research 2022;2:2100116. [DOI: 10.1002/anbr.202100116] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021;13:1994. [PMID: 34959276 DOI: 10.3390/pharmaceutics13121994] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Li S, Liu J, Liu S, Jiao W, Wang X. Chitosan oligosaccharides packaged into rat adipose mesenchymal stem cells-derived extracellular vesicles facilitating cartilage injury repair and alleviating osteoarthritis. J Nanobiotechnology 2021;19:343. [PMID: 34702302 DOI: 10.1186/s12951-021-01086-x] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
8 Shirzaei Sani I, Rezaei M, Baradar Khoshfetrat A, Razzaghi D. Preparation and characterization of polycaprolactone/chitosan-g-polycaprolactone/hydroxyapatite electrospun nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 2021;182:1638-49. [PMID: 34052267 DOI: 10.1016/j.ijbiomac.2021.05.163] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
9 Weng W, Wu W, Hou M, Liu T, Wang T, Yang H. Review of zirconia-based biomimetic scaffolds for bone tissue engineering. J Mater Sci 2021;56:8309-33. [DOI: 10.1007/s10853-021-05824-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
10 Anita Lett J, Sagadevan S, Fatimah I, Hoque ME, Lokanathan Y, Léonard E, Alshahateet SF, Schirhagl R, Oh WC. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. European Polymer Journal 2021;148:110360. [DOI: 10.1016/j.eurpolymj.2021.110360] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 26.0] [Reference Citation Analysis]
11 Ding Y, Li W, Schubert DW, Boccaccini AR, Roether JA, Santos HA. An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinning. Mater Sci Eng C Mater Biol Appl 2021;124:112079. [PMID: 33947571 DOI: 10.1016/j.msec.2021.112079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Slivac I, Zdraveva E, Ivančić F, Žunar B, Holjevac Grgurić T, Gaurina Srček V, Svetec IK, Dolenec T, Bajsić EG, Tominac Trcin M, Mijović B. Bioactivity Comparison of Electrospun PCL Mats and Liver Extracellular Matrix as Scaffolds for HepG2 Cells. Polymers (Basel) 2021;13:279. [PMID: 33467025 DOI: 10.3390/polym13020279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Nosrati H, Aramideh Khouy R, Nosrati A, Khodaei M, Banitalebi-Dehkordi M, Ashrafi-Dehkordi K, Sanami S, Alizadeh Z. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J Nanobiotechnology 2021;19:1. [PMID: 33397416 DOI: 10.1186/s12951-020-00755-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 83] [Article Influence: 7.0] [Reference Citation Analysis]
14 Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater 2021;6:1491-511. [PMID: 33294729 DOI: 10.1016/j.bioactmat.2020.11.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 63] [Article Influence: 7.5] [Reference Citation Analysis]
15 Arsenie L, Pinese C, Bethry A, Valot L, Verdie P, Nottelet B, Subra G, Darcos V, Garric X. Star-poly(lactide)-peptide hybrid networks as bioactive materials. European Polymer Journal 2020;139:109990. [DOI: 10.1016/j.eurpolymj.2020.109990] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Peixoto T, Paiva MC, Marques AT, Lopes MA. Potential of Graphene–Polymer Composites for Ligament and Tendon Repair: A Review. Adv Eng Mater 2020;22:2000492. [DOI: 10.1002/adem.202000492] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
17 Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020;8:922. [PMID: 32974298 DOI: 10.3389/fbioe.2020.00922] [Cited by in Crossref: 11] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
18 Maleki-ghaleh H, Khalil-allafi J, Keikhosravani P, Etminanfar MR, Behnamian Y. Effect of Nano-zirconia on Microstructure and Biological Behavior of Hydroxyapatite-Based Bone Scaffolds. J of Materi Eng and Perform 2020;29:4412-20. [DOI: 10.1007/s11665-020-04927-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Bhattacharya D, Ghosh B, Mukhopadhyay M. Development of nanotechnology for advancement and application in wound healing: a review. IET Nanobiotechnol 2019;13:778-85. [PMID: 31625517 DOI: 10.1049/iet-nbt.2018.5312] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
20 Wang S, Huang G, Dong Y. Directional Migration and Odontogenic Differentiation of Bone Marrow Stem Cells Induced by Dentin Coated with Nanobioactive Glass. Journal of Endodontics 2020;46:216-23. [DOI: 10.1016/j.joen.2019.11.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
21 Knupp W, Ribeiro M, Mir M, Camps I. Dynamics of hydroxyapatite and carbon nanotubes interaction. Applied Surface Science 2019;495:143493. [DOI: 10.1016/j.apsusc.2019.07.235] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
22 Dulany K, Hepburn K, Goins A, Allen JB. In vitro and in vivo biocompatibility assessment of free radical scavenging nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res A 2020;108:301-15. [PMID: 31606924 DOI: 10.1002/jbm.a.36816] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
23 Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Tzetzis D, Bikiaris D. Composite Membranes of Poly(ε-caprolactone) with Bisphosphonate-Loaded Bioactive Glasses for Potential Bone Tissue Engineering Applications. Molecules 2019;24:E3067. [PMID: 31450742 DOI: 10.3390/molecules24173067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
24 Mariotti G, Vannozzi L. Fabrication, Characterization, and Properties of Poly (Ethylene-Co-Vinyl Acetate) Composite Thin Films Doped with Piezoelectric Nanofillers. Nanomaterials (Basel) 2019;9:E1182. [PMID: 31434204 DOI: 10.3390/nano9081182] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
25 García-Villén F, Faccendini A, Aguzzi C, Cerezo P, Bonferoni MC, Rossi S, Grisoli P, Ruggeri M, Ferrari F, Sandri G, Viseras C. Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds. Int J Nanomedicine 2019;14:5051-60. [PMID: 31371946 DOI: 10.2147/IJN.S208713] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
26 Tan ST, Winarto N, Dosan R, Aisyah PB. The Benefits Of Occlusive Dressings In Wound Healing. TODJ 2019;13:27-33. [DOI: 10.2174/1874372201913010027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
27 Ghutepatil PR, Salunkhe AB, Khot VM, Pawar SH. APTES (3-aminopropyltriethoxy silane) functionalized MnFe2O4 nanoparticles: a potential material for magnetic fluid hyperthermia. Chem Pap 2019;73:2189-97. [DOI: 10.1007/s11696-019-00768-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Mondal S, Hoang G, Manivasagan P, Moorthy MS, Kim HH, Vy Phan TT, Oh J. Comparative characterization of biogenic and chemical synthesized hydroxyapatite biomaterials for potential biomedical application. Materials Chemistry and Physics 2019;228:344-56. [DOI: 10.1016/j.matchemphys.2019.02.021] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
29 Ahmadi SM, Behnamghader A, Asefnejaad A. Evaluation of hMSCs Response to Sodium Alginate / Bioactive Glass Composite Paste: Effect of CaO/P2O5, Sodium Alginate Concentration and P/L Ratios. CSCR 2019;14:196-210. [DOI: 10.2174/1574888x13666180703141956] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Khalilipour A, Paydayesh A. Characterization of Polyvinyl Alcohol/ZnO Nanocomposite Hydrogels for Wound Dressings. Journal of Macromolecular Science, Part B 2019;58:371-84. [DOI: 10.1080/00222348.2018.1560936] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
31 Gurtovenko AA, Mukhamadiarov EI, Kostritskii AY, Karttunen M. Phospholipid–Cellulose Interactions: Insight from Atomistic Computer Simulations for Understanding the Impact of Cellulose-Based Materials on Plasma Membranes. J Phys Chem B 2018;122:9973-81. [DOI: 10.1021/acs.jpcb.8b07765] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
32 Li Y, Guo Y, Niu W, Chen M, Xue Y, Ge J, Ma PX, Lei B. Biodegradable Multifunctional Bioactive Glass-Based Nanocomposite Elastomers with Controlled Biomineralization Activity, Real-Time Bioimaging Tracking, and Decreased Inflammatory Response. ACS Appl Mater Interfaces 2018;10:17722-31. [PMID: 29737839 DOI: 10.1021/acsami.8b04856] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
33 Li Y, Ye D, Li M, Ma M, Gu N. Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration. ChemPhysChem 2018;19:1965-79. [DOI: 10.1002/cphc.201701294] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 6.5] [Reference Citation Analysis]
34 Singh V, Dwivedi LM, Baranwal K, Asthana S, Sundaram S. Oxidized guar gum–ZnO hybrid nanostructures: synthesis, characterization and antibacterial activity. Appl Nanosci 2018;8:1149-60. [DOI: 10.1007/s13204-018-0747-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
35 Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 2018;7:1-21. [PMID: 29446015 DOI: 10.1007/s40204-018-0083-4] [Cited by in Crossref: 139] [Cited by in F6Publishing: 160] [Article Influence: 34.8] [Reference Citation Analysis]
36 Stocco TD, Bassous NJ, Zhao S, Granato AEC, Webster TJ, Lobo AO. Nanofibrous scaffolds for biomedical applications. Nanoscale 2018;10:12228-55. [DOI: 10.1039/c8nr02002g] [Cited by in Crossref: 33] [Cited by in F6Publishing: 40] [Article Influence: 8.3] [Reference Citation Analysis]
37 Osorio Meléndez D, Castro-osma JA, Lara-sánchez A, Rojas RS, Otero A. Ring-opening polymerization and copolymerization of cyclic esters catalyzed by amidinate aluminum complexes. J Polym Sci Part A: Polym Chem 2017;55:2397-407. [DOI: 10.1002/pola.28629] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
38 Čech Barabaszová K, Holešová S, Hundáková M, Pazdziora E, Ritz M. Antibacterial LDPE Nanocomposites Based on Zinc Oxide Nanoparticles/Vermiculite Nanofiller. J Inorg Organomet Polym 2017;27:986-95. [DOI: 10.1007/s10904-017-0546-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
39 [DOI: 10.1063/1.5000181] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]