BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bouwman BAM, Crosetto N. Endogenous DNA Double-Strand Breaks during DNA Transactions: Emerging Insights and Methods for Genome-Wide Profiling. Genes (Basel) 2018;9:E632. [PMID: 30558210 DOI: 10.3390/genes9120632] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Harbers L, Agostini F, Nicos M, Poddighe D, Bienko M, Crosetto N. Somatic Copy Number Alterations in Human Cancers: An Analysis of Publicly Available Data From The Cancer Genome Atlas. Front Oncol 2021;11:700568. [PMID: 34395272 DOI: 10.3389/fonc.2021.700568] [Reference Citation Analysis]
2 Hänsel-hertsch R, Simeone A, Shea A, Hui WWI, Zyner KG, Marsico G, Rueda OM, Bruna A, Martin A, Zhang X, Adhikari S, Tannahill D, Caldas C, Balasubramanian S. Landscape of G-quadruplex DNA structural regions in breast cancer. Nat Genet 2020;52:878-83. [DOI: 10.1038/s41588-020-0672-8] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 16.0] [Reference Citation Analysis]
3 Zhu W, Hu J, Chi J, Li Y, Yang B, Hu W, Chen F, Xu C, Chai L, Bao Y. Label-Free Proteomics Reveals the Molecular Mechanism of Subculture Induced Strain Degeneration and Discovery of Indicative Index for Degeneration in Pleurotus ostreatus. Molecules 2020;25:E4920. [PMID: 33114310 DOI: 10.3390/molecules25214920] [Reference Citation Analysis]
4 Aditi, Downing SM, Schreiner PA, Kwak YD, Li Y, Shaw TI, Russell HR, McKinnon PJ. Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair. Neuron 2021:S0896-6273(21)00713-3. [PMID: 34655526 DOI: 10.1016/j.neuron.2021.09.040] [Reference Citation Analysis]
5 Pérez Di Giorgio JA, Lepage É, Tremblay-Belzile S, Truche S, Loubert-Hudon A, Brisson N. Transcription is a major driving force for plastid genome instability in Arabidopsis. PLoS One 2019;14:e0214552. [PMID: 30943245 DOI: 10.1371/journal.pone.0214552] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Szlachta K, Raimer HM, Comeau LD, Wang YH. CNCC: an analysis tool to determine genome-wide DNA break end structure at single-nucleotide resolution. BMC Genomics 2020;21:25. [PMID: 31914926 DOI: 10.1186/s12864-019-6436-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
7 Atkin ND, Raimer HM, Wang YH. Broken by the Cut: A Journey into the Role of Topoisomerase II in DNA Fragility. Genes (Basel) 2019;10:E791. [PMID: 31614754 DOI: 10.3390/genes10100791] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
8 Khera E, Cilliers C, Smith MD, Ganno ML, Lai KC, Keating TA, Kopp A, Nessler I, Abu-Yousif AO, Thurber GM. Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping. Neoplasia 2021;23:210-21. [PMID: 33385970 DOI: 10.1016/j.neo.2020.12.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Ortega P, Gómez-González B, Aguilera A. Heterogeneity of DNA damage incidence and repair in different chromatin contexts. DNA Repair (Amst) 2021;107:103210. [PMID: 34416542 DOI: 10.1016/j.dnarep.2021.103210] [Reference Citation Analysis]
10 Marshall CJ, Santangelo TJ. Archaeal DNA Repair Mechanisms. Biomolecules 2020;10:E1472. [PMID: 33113933 DOI: 10.3390/biom10111472] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Martínez-Vicente I, Abrisqueta M, Herraiz C, Sirés-Campos J, Castejón-Griñán M, Bennett DC, Olivares C, García-Borrón JC, Jiménez-Cervantes C. Mahogunin Ring Finger 1 Is Required for Genomic Stability and Modulates the Malignant Phenotype of Melanoma Cells. Cancers (Basel) 2020;12:E2840. [PMID: 33019669 DOI: 10.3390/cancers12102840] [Reference Citation Analysis]
12 Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers (Basel) 2019;11:E1789. [PMID: 31739493 DOI: 10.3390/cancers11111789] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 14.0] [Reference Citation Analysis]
13 Paull TT. RNA-DNA hybrids and the convergence with DNA repair. Crit Rev Biochem Mol Biol 2019;54:371-84. [PMID: 31577154 DOI: 10.1080/10409238.2019.1670131] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
14 Rodríguez TC, Dadafarin S, Pratt HE, Liu P, Amrani N, Zhu LJ. Genome-wide detection and analysis of CRISPR-Cas off-targets. Prog Mol Biol Transl Sci 2021;181:31-43. [PMID: 34127199 DOI: 10.1016/bs.pmbts.2021.01.012] [Reference Citation Analysis]
15 Vítor AC, Huertas P, Legube G, de Almeida SF. Studying DNA Double-Strand Break Repair: An Ever-Growing Toolbox. Front Mol Biosci 2020;7:24. [PMID: 32154266 DOI: 10.3389/fmolb.2020.00024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 13.0] [Reference Citation Analysis]
16 Wang WJ, Li LY, Cui JW. Chromosome structural variation in tumorigenesis: mechanisms of formation and carcinogenesis. Epigenetics Chromatin 2020;13:49. [PMID: 33168103 DOI: 10.1186/s13072-020-00371-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021;9:640755. [PMID: 33718381 DOI: 10.3389/fcell.2021.640755] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Puget N, Miller KM, Legube G. Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates? DNA Repair (Amst) 2019;81:102661. [PMID: 31331819 DOI: 10.1016/j.dnarep.2019.102661] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 15.0] [Reference Citation Analysis]
19 Oster S, Aqeilan RI. Programmed DNA Damage and Physiological DSBs: Mapping, Biological Significance and Perturbations in Disease States. Cells 2020;9:E1870. [PMID: 32785139 DOI: 10.3390/cells9081870] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Bouwman BAM, Agostini F, Garnerone S, Petrosino G, Gothe HJ, Sayols S, Moor AE, Itzkovitz S, Bienko M, Roukos V, Crosetto N. Genome-wide detection of DNA double-strand breaks by in-suspension BLISS. Nat Protoc 2020;15:3894-941. [PMID: 33139954 DOI: 10.1038/s41596-020-0397-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Bowry A, Kelly RDW, Petermann E. Hypertranscription and replication stress in cancer. Trends Cancer 2021;7:863-77. [PMID: 34052137 DOI: 10.1016/j.trecan.2021.04.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Liddle P, Jara-Wilde J, Lafon-Hughes L, Castro I, Härtel S, Folle G. dSTORM microscopy evidences in HeLa cells clustered and scattered γH2AX nanofoci sensitive to ATM, DNA-PK, and ATR kinase inhibitors. Mol Cell Biochem 2020;473:77-91. [PMID: 32638256 DOI: 10.1007/s11010-020-03809-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Rose E, Carvalho JL, Hecht M. Mechanisms of DNA repair in Trypanosoma cruzi: What do we know so far? DNA Repair (Amst) 2020;91-92:102873. [PMID: 32505694 DOI: 10.1016/j.dnarep.2020.102873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Hazan I, Monin J, Bouwman BAM, Crosetto N, Aqeilan RI. Activation of Oncogenic Super-Enhancers Is Coupled with DNA Repair by RAD51. Cell Rep 2019;29:560-572.e4. [PMID: 31618627 DOI: 10.1016/j.celrep.2019.09.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
25 Saayman X, Esashi F. Breaking the paradigm: early insights from mammalian DNA breakomes. FEBS J 2021. [PMID: 33792193 DOI: 10.1111/febs.15849] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Pavankumar TL, Mittal P, Hallsworth JE. Molecular insights into the ecology of a psychrotolerant Pseudomonas syringae. Environ Microbiol 2021;23:3665-81. [DOI: 10.1111/1462-2920.15304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Liu X, Liu M, Zhang J, Chang Y, Cui Z, Ji B, Nielsen J, Qi Q, Hou J. Mapping of Nonhomologous End Joining-Mediated Integration Facilitates Genome-Scale Trackable Mutagenesis in Yarrowia lipolytica. ACS Synth Biol 2021. [PMID: 34958561 DOI: 10.1021/acssynbio.1c00390] [Reference Citation Analysis]