BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nickoloff JA, Sharma N, Taylor L. Clustered DNA Double-Strand Breaks: Biological Effects and Relevance to Cancer Radiotherapy. Genes (Basel) 2020;11:E99. [PMID: 31952359 DOI: 10.3390/genes11010099] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Elbanna M, Chowdhury NN, Rhome R, Fishel ML. Clinical and Preclinical Outcomes of Combining Targeted Therapy With Radiotherapy. Front Oncol 2021;11:749496. [PMID: 34733787 DOI: 10.3389/fonc.2021.749496] [Reference Citation Analysis]
2 Qian H, Hoebe RA, Faas MR, van Goethem MJ, van der Graaf ER, Meyer C, Kiewiet H, Brandenburg S, Krawczyk PM. A simple microscopy setup for visualizing cellular responses to DNA damage at particle accelerator facilities. Sci Rep 2021;11:14528. [PMID: 34267233 DOI: 10.1038/s41598-021-92950-1] [Reference Citation Analysis]
3 van de Kamp G, Heemskerk T, Kanaar R, Essers J. DNA Double Strand Break Repair Pathways in Response to Different Types of Ionizing Radiation. Front Genet 2021;12:738230. [PMID: 34659358 DOI: 10.3389/fgene.2021.738230] [Reference Citation Analysis]
4 Jagetia GC, Jacob PS. (E)4-[4-N,N-dimethylaminophenyl]but-3-en-2-one mitigates radiation-induced chromosome damage in BALB/c mouse bone marrow. Mutat Res Genet Toxicol Environ Mutagen 2020;858-860:503238. [PMID: 33198928 DOI: 10.1016/j.mrgentox.2020.503238] [Reference Citation Analysis]
5 Wengner AM, Scholz A, Haendler B. Targeting DNA Damage Response in Prostate and Breast Cancer. Int J Mol Sci 2020;21:E8273. [PMID: 33158305 DOI: 10.3390/ijms21218273] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
6 Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021;6:254. [PMID: 34238917 DOI: 10.1038/s41392-021-00648-7] [Reference Citation Analysis]
7 Tsai LJ, Lopezcolorado FW, Bhargava R, Mendez-Dorantes C, Jahanshir E, Stark JM. RNF8 has both KU-dependent and independent roles in chromosomal break repair. Nucleic Acids Res 2020;48:6032-52. [PMID: 32427332 DOI: 10.1093/nar/gkaa380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
8 House NCM, Parasuram R, Layer JV, Price BD. Site-specific targeting of a light activated dCas9-KillerRed fusion protein generates transient, localized regions of oxidative DNA damage. PLoS One 2020;15:e0237759. [PMID: 33332350 DOI: 10.1371/journal.pone.0237759] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Abu Shqair A, Kim EH. Multi-scaled Monte Carlo calculation for radon-induced cellular damage in the bronchial airway epithelium. Sci Rep 2021;11:10230. [PMID: 33986410 DOI: 10.1038/s41598-021-89689-0] [Reference Citation Analysis]
10 Nikitaki Z, Pariset E, Sudar D, Costes SV, Georgakilas AG. In Situ Detection of Complex DNA Damage Using Microscopy: A Rough Road Ahead. Cancers (Basel) 2020;12:E3288. [PMID: 33172046 DOI: 10.3390/cancers12113288] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Fucic A, Druzhinin V, Aghajanyan A, Slijepcevic P, Bakanova M, Baranova E, Minina V, Golovina T, Kourdakov K, Timofeeva A, Titov V. Rogue versus chromothriptic cell as biomarker of cancer. Mutat Res Rev Mutat Res 2020;784:108299. [PMID: 32430100 DOI: 10.1016/j.mrrev.2020.108299] [Reference Citation Analysis]
12 Chan CC, Hsiao YY. The Effects of Dimethylsulfoxide and Oxygen on DNA Damage Induction and Repair Outcomes for Cells Irradiated by 62 MeV Proton and 3.31 MeV Helium Ions. J Pers Med 2021;11:286. [PMID: 33917956 DOI: 10.3390/jpm11040286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Hsiao YY, Chen FH, Chan CC, Tsai CC. Monte Carlo Simulation of Double-Strand Break Induction and Conversion after Ultrasoft X-rays Irradiation. Int J Mol Sci 2021;22:11713. [PMID: 34769142 DOI: 10.3390/ijms222111713] [Reference Citation Analysis]
14 Wallace SS. Molecular radiobiology and the origins of the base excision repair pathway: an historical perspective. International Journal of Radiation Biology. [DOI: 10.1080/09553002.2021.1908639] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Xiao Y, Li J, Liao X, He Y, He T, Yang C, Jiang L, Jeon SM, Lee JH, Chen Y, Liu R, Chen Q. RIOX1-demethylated cGAS regulates ionizing radiation-elicited DNA repair. Bone Res 2022;10:19. [PMID: 35210392 DOI: 10.1038/s41413-022-00194-0] [Reference Citation Analysis]
16 Raices M, Bowman R, Smolikove S, Yanowitz JL. Aging Negatively Impacts DNA Repair and Bivalent Formation in the C. elegans Germ Line. Front Cell Dev Biol 2021;9:695333. [PMID: 34422819 DOI: 10.3389/fcell.2021.695333] [Reference Citation Analysis]
17 Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021;13:2997. [PMID: 34203882 DOI: 10.3390/cancers13122997] [Reference Citation Analysis]
18 Calvert GR, Evans MR. Searching for clusters of targets under stochastic resetting. Eur Phys J B 2021;94. [DOI: 10.1140/epjb/s10051-021-00238-0] [Reference Citation Analysis]
19 Averbek S, Jakob B, Durante M, Averbeck NB. O-GlcNAcylation Affects the Pathway Choice of DNA Double-Strand Break Repair. Int J Mol Sci 2021;22:5715. [PMID: 34071949 DOI: 10.3390/ijms22115715] [Reference Citation Analysis]
20 Wallace SS. Consequences and repair of radiation-induced DNA damage: fifty years of fun questions and answers. Int J Radiat Biol 2021;:1-16. [PMID: 34187282 DOI: 10.1080/09553002.2021.1948141] [Reference Citation Analysis]
21 Alshaibi HF, Al-Shehri B, Hassan B, Al-Zahrani R, Assiss T. Modulated Electrohyperthermia: A New Hope for Cancer Patients. Biomed Res Int 2020;2020:8814878. [PMID: 33274226 DOI: 10.1155/2020/8814878] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Hirano SI, Ichikawa Y, Sato B, Yamamoto H, Takefuji Y, Satoh F. Molecular Hydrogen as a Potential Clinically Applicable Radioprotective Agent. Int J Mol Sci 2021;22:4566. [PMID: 33925430 DOI: 10.3390/ijms22094566] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Rassamegevanon T, Feindt L, Koi L, Müller J, Freudenberg R, Löck S, Sihver W, Çevik E, Kühn AC, von Neubeck C, Linge A, Pietzsch HJ, Kotzerke J, Baumann M, Krause M, Dietrich A. Molecular Response to Combined Molecular- and External Radiotherapy in Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2021;13:5595. [PMID: 34830750 DOI: 10.3390/cancers13225595] [Reference Citation Analysis]
24 Georgakilas AG. Role of DNA Damage and Repair in Detrimental Effects of Ionizing Radiation. Radiation 2021;1:1-4. [DOI: 10.3390/radiation1010001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chua KLM, Chu PL, Tng DJH, Soo KC, Chua MLK. Repurposing Proton Beam Therapy through Novel Insights into Tumour Radioresistance. Clin Oncol (R Coll Radiol) 2021;33:e469-81. [PMID: 34509347 DOI: 10.1016/j.clon.2021.08.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Matsuno Y, Hyodo M, Suzuki M, Tanaka Y, Horikoshi Y, Murakami Y, Torigoe H, Mano H, Tashiro S, Yoshioka KI. Replication-stress-associated DSBs induced by ionizing radiation risk genomic destabilization and associated clonal evolution. iScience 2021;24:102313. [PMID: 33870130 DOI: 10.1016/j.isci.2021.102313] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Posypanova GA, Ratushnyak MG, Semochkina YP, Strepetov AN. Response of murine neural stem/progenitor cells to gamma-neutron radiation. Int J Radiat Biol 2022;:1-12. [PMID: 35311625 DOI: 10.1080/09553002.2022.2055802] [Reference Citation Analysis]
28 Helm A, Fournier C, Durante M. Particle radiotherapy and molecular therapies: mechanisms and strategies towards clinical applications. Expert Rev Mol Med 2022;24:e8. [PMID: 35101155 DOI: 10.1017/erm.2022.2] [Reference Citation Analysis]
29 Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021;11:1437. [PMID: 34947968 DOI: 10.3390/life11121437] [Reference Citation Analysis]
30 Noubissi FK, McBride AA, Leppert HG, Millet LJ, Wang X, Davern SM. Detection and quantification of γ-H2AX using a dissociation enhanced lanthanide fluorescence immunoassay. Sci Rep 2021;11:8945. [PMID: 33903655 DOI: 10.1038/s41598-021-88296-3] [Reference Citation Analysis]
31 Pobiega S, Alibert O, Marcand S. A new assay capturing chromosome fusions shows a protection trade-off at telomeres and NHEJ vulnerability to low-density ionizing radiation. Nucleic Acids Res 2021;49:6817-31. [PMID: 34125900 DOI: 10.1093/nar/gkab502] [Reference Citation Analysis]
32 Zhou Q, Howard ME, Tu X, Zhu Q, Denbeigh JM, Remmes NB, Herman MG, Beltran CJ, Yuan J, Greipp PT, Boughey JC, Wang L, Johnson N, Goetz MP, Sarkaria JN, Lou Z, Mutter RW. Inhibition of ATM Induces Hypersensitivity to Proton Irradiation by Upregulating Toxic End Joining. Cancer Res 2021;81:3333-46. [PMID: 33597272 DOI: 10.1158/0008-5472.CAN-20-2960] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
33 Chédeville AL, Madureira PA. The Role of Hypoxia in Glioblastoma Radiotherapy Resistance. Cancers (Basel) 2021;13:542. [PMID: 33535436 DOI: 10.3390/cancers13030542] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
34 Liu J, Hormuth DA, Yang J, Yankeelov TE. A Multi-Compartment Model of Glioma Response to Fractionated Radiation Therapy Parameterized via Time-Resolved Microscopy Data. Front Oncol 2022;12:811415. [DOI: 10.3389/fonc.2022.811415] [Reference Citation Analysis]
35 Xu F, Chen P, Li H, Qiao S, Wang J, Wang Y, Wang X, Wu B, Liu H, Wang C, Xu H. Comparative transcriptome analysis reveals the differential response to cadmium stress of two Pleurotus fungi: Pleurotus cornucopiae and Pleurotus ostreatus. J Hazard Mater 2021;416:125814. [PMID: 33866290 DOI: 10.1016/j.jhazmat.2021.125814] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Marullo R, Castro M, Yomtoubian S, Calvo-Vidal MN, Revuelta MV, Krumsiek J, Cho A, Morgado PC, Yang S, Medina V, Roth BM, Bonomi M, Keshari KR, Mittal V, Navigante A, Cerchietti L. The metabolic adaptation evoked by arginine enhances the effect of radiation in brain metastases. Sci Adv 2021;7:eabg1964. [PMID: 34739311 DOI: 10.1126/sciadv.abg1964] [Reference Citation Analysis]
37 S Santos L, M Gil O, N Silva S, C Gomes B, C Ferreira T, Limbert E, Rueff J. Micronuclei Formation upon Radioiodine Therapy for Well-Differentiated Thyroid Cancer: The Influence of DNA Repair Genes Variants. Genes (Basel) 2020;11:E1083. [PMID: 32957448 DOI: 10.3390/genes11091083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
38 Keta O, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin WG, Incerti S, Petrović I, Ristić Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. Int J Radiat Biol 2021;97:1229-40. [PMID: 34187289 DOI: 10.1080/09553002.2021.1948140] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Bastiani I, McMahon SJ, Turner P, Redmond KM, McGarry CK, Cole A, O'Sullivan JM, Prise KM, Ainsbury L, Anderson R. Dose estimation after a mixed field exposure: Radium-223 and intensity modulated radiotherapy. Nucl Med Biol 2021;106-107:10-20. [PMID: 34968973 DOI: 10.1016/j.nucmedbio.2021.12.002] [Reference Citation Analysis]
40 Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. Cancer Drug Resist 2021;4:244-63. [PMID: 34337349 DOI: 10.20517/cdr.2020.89] [Reference Citation Analysis]
41 Friis I, Verkhovtsev AV, Solov'yov IA, Solov'yov AV. Lethal DNA damage caused by ion-induced shock waves in cells. Phys Rev E 2021;104:054408. [PMID: 34942780 DOI: 10.1103/PhysRevE.104.054408] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Tonelli Nogueira MO, Almeida JSFD, Franca TCC, Figueroa-Villar JD. Synthesis and docking studies of three new diaminochromenes as potential leads for anticancer drugs. J Biomol Struct Dyn 2021;39:5005-13. [PMID: 32597332 DOI: 10.1080/07391102.2020.1784284] [Reference Citation Analysis]
43 Miszczyk J. Investigation of DNA Damage and Cell-Cycle Distribution in Human Peripheral Blood Lymphocytes under Exposure to High Doses of Proton Radiotherapy. Biology (Basel) 2021;10:111. [PMID: 33546318 DOI: 10.3390/biology10020111] [Reference Citation Analysis]
44 Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020;13:E18. [PMID: 33374540 DOI: 10.3390/cancers13010018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
45 Liddle P, Jara-Wilde J, Lafon-Hughes L, Castro I, Härtel S, Folle G. dSTORM microscopy evidences in HeLa cells clustered and scattered γH2AX nanofoci sensitive to ATM, DNA-PK, and ATR kinase inhibitors. Mol Cell Biochem 2020;473:77-91. [PMID: 32638256 DOI: 10.1007/s11010-020-03809-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Baiken Y, Kanayeva D, Taipakova S, Groisman R, Ishchenko AA, Begimbetova D, Matkarimov B, Saparbaev M. Role of Base Excision Repair Pathway in the Processing of Complex DNA Damage Generated by Oxidative Stress and Anticancer Drugs. Front Cell Dev Biol 2020;8:617884. [PMID: 33553154 DOI: 10.3389/fcell.2020.617884] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Morás AM, Henn JG, Steffens Reinhardt L, Lenz G, Moura DJ. Recent developments in drug delivery strategies for targeting DNA damage response in glioblastoma. Life Sci 2021;287:120128. [PMID: 34774874 DOI: 10.1016/j.lfs.2021.120128] [Reference Citation Analysis]
48 Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021;22:11047. [PMID: 34681703 DOI: 10.3390/ijms222011047] [Reference Citation Analysis]
49 Nickoloff JA, Sharma N, Taylor L, Allen SJ, Hromas R. The Safe Path at the Fork: Ensuring Replication-Associated DNA Double-Strand Breaks are Repaired by Homologous Recombination. Front Genet 2021;12:748033. [PMID: 34646312 DOI: 10.3389/fgene.2021.748033] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Staudacher AH, Li Y, Liapis V, Brown MP. The RNA-binding protein La/SSB associates with radiation-induced DNA double-strand breaks in lung cancer cell lines. Cancer Rep (Hoboken) 2021;:e1543. [PMID: 34636174 DOI: 10.1002/cnr2.1543] [Reference Citation Analysis]
51 Harrell K, Day M, Smolikove S. Recruitment of MRE-11 to complex DNA damage is modulated by meiosis-specific chromosome organization. Mutat Res 2021;822:111743. [PMID: 33975127 DOI: 10.1016/j.mrfmmm.2021.111743] [Reference Citation Analysis]