BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mathew TL, Pownraj P, Abdulla S, Pullithadathil B. Technologies for Clinical Diagnosis Using Expired Human Breath Analysis. Diagnostics (Basel) 2015;5:27-60. [PMID: 26854142 DOI: 10.3390/diagnostics5010027] [Cited by in Crossref: 59] [Cited by in F6Publishing: 34] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Asanuma K, Hino S, Maruo YY. Development of an analytical chip for nitrogen monoxide detection using porous glass impregnated with 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl. Microchemical Journal 2019;151:104251. [DOI: 10.1016/j.microc.2019.104251] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Chen Q, Chen Z, Liu D, He Z, Wu J. Constructing an E-Nose Using Metal-Ion-Induced Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath. ACS Appl Mater Interfaces 2020;12:17713-24. [PMID: 32203649 DOI: 10.1021/acsami.0c00720] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
3 Maniscalco M, Vitale C, Vatrella A, Molino A, Bianco A, Mazzarella G. Fractional exhaled nitric oxide-measuring devices: technology update. Med Devices (Auckl) 2016;9:151-60. [PMID: 27382340 DOI: 10.2147/MDER.S91201] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
4 Tang L, Chang SJ, Chen CJ, Liu JT. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors (Basel) 2020;20:E6925. [PMID: 33291519 DOI: 10.3390/s20236925] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
5 Bruen D, Delaney C, Florea L, Diamond D. Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors (Basel). 2017;17:E1866. [PMID: 28805693 DOI: 10.3390/s17081866] [Cited by in Crossref: 300] [Cited by in F6Publishing: 168] [Article Influence: 60.0] [Reference Citation Analysis]
6 Steppert I, Schönfelder J, Schultz C, Kuhlmeier D. Rapid in vitro differentiation of bacteria by ion mobility spectrometry. Appl Microbiol Biotechnol 2021;105:4297-307. [PMID: 33974116 DOI: 10.1007/s00253-021-11315-w] [Reference Citation Analysis]
7 Kalidoss R, Umapathy S, Rani Thirunavukkarasu U. A breathalyzer for the assessment of chronic kidney disease patients’ breathprint: Breath flow dynamic simulation on the measurement chamber and experimental investigation. Biomedical Signal Processing and Control 2021;70:103060. [DOI: 10.1016/j.bspc.2021.103060] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wu T, De Luca A, Zhong Q, Zhu X, Ogbeide O, Um D, Hu G, Albrow-owen T, Udrea F, Hasan T. Inkjet-printed CMOS-integrated graphene–metal oxide sensors for breath analysis. npj 2D Mater Appl 2019;3. [DOI: 10.1038/s41699-019-0125-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 5.3] [Reference Citation Analysis]
9 Chandran D, Ooi EH, Watson DI, Kholmurodova F, Jaenisch S, Yazbeck R. The Use of Selected Ion Flow Tube-Mass Spectrometry Technology to Identify Breath Volatile Organic Compounds for the Detection of Head and Neck Squamous Cell Carcinoma: A Pilot Study. Medicina (Kaunas) 2019;55:E306. [PMID: 31242578 DOI: 10.3390/medicina55060306] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
10 Yan H, Zhou Y. Electrical sensing of volatile organic compounds in exhaled breath for disease diagnosis. Current Opinion in Electrochemistry 2021. [DOI: 10.1016/j.coelec.2021.100922] [Reference Citation Analysis]
11 Popa C, Petrus M, Bratu AM, Negut I. Experimental Investigation on Water Adsorption Using Laser Photoacoustic Spectroscopy and Numerical Simulations. Materials (Basel) 2021;14:5839. [PMID: 34640236 DOI: 10.3390/ma14195839] [Reference Citation Analysis]
12 Bannov AG, Popov MV, Brester AE, Kurmashov PB. Recent Advances in Ammonia Gas Sensors Based on Carbon Nanomaterials. Micromachines (Basel) 2021;12:186. [PMID: 33673142 DOI: 10.3390/mi12020186] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 9.0] [Reference Citation Analysis]
13 Cho S, Park C, Jeon M, Hwa Lee J, Kwon O, Seong S, Kim J, Kim I, Ri Moon H. Interface-Sensitized Chemiresistor: Integrated Conductive and Porous Metal-Organic Frameworks. Chemical Engineering Journal 2022;449:137780. [DOI: 10.1016/j.cej.2022.137780] [Reference Citation Analysis]
14 Lu J, Xu C, Cheng L, Jia N, Huang J, Li C. Acetone sensor based on WO3 nanocrystallines with oxygen defects for low concentration detection. Materials Science in Semiconductor Processing 2019;101:214-22. [DOI: 10.1016/j.mssp.2019.05.038] [Cited by in Crossref: 25] [Article Influence: 8.3] [Reference Citation Analysis]
15 Lee JH, Baek S, Lee H, Khang D, Lee W. Soft-lithographically line-patterned In-doped ZnO quantum dots with hydrothermally grown ZnO nanocolumns for acetone detection. Sensors and Actuators B: Chemical 2021;329:129131. [DOI: 10.1016/j.snb.2020.129131] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Raninen K, Lappi J, Kolehmainen M, Kolehmainen M, Mykkänen H, Poutanen K, Raatikainen O. Diet-derived changes by sourdough-fermented rye bread in exhaled breath aspiration ion mobility spectrometry profiles in individuals with mild gastrointestinal symptoms. Int J Food Sci Nutr 2017;68:987-96. [PMID: 28391735 DOI: 10.1080/09637486.2017.1312296] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
17 Rothbart N, Stanley V, Koczulla R, Jarosch I, Holz O, Schmalz K, Hübers HW. Millimeter-wave gas spectroscopy for breath analysis of COPD patients in comparison to GC-MS. J Breath Res 2022;16. [PMID: 35688126 DOI: 10.1088/1752-7163/ac77aa] [Reference Citation Analysis]
18 Morisot F, Zuliani C, Luque J, Ali Z, Mouis M, Nguyen VH, Muñoz-rojas D, Lourhzal O, Texier M, Cornelius TW, Ternon C. ZnO based nanowire network for gas sensing applications. Mater Res Express 2019;6:084004. [DOI: 10.1088/2053-1591/ab1f60] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 De A, Banik GD, Maity A, Pal M, Pradhan M. Continuous wave external-cavity quantum cascade laser-based high-resolution cavity ring-down spectrometer for ultrasensitive trace gas detection. Opt Lett 2016;41:1949. [DOI: 10.1364/ol.41.001949] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 3.2] [Reference Citation Analysis]
20 Chuang MY, Chen CC, Zan HW, Meng HF, Lu CJ. Organic Gas Sensor with an Improved Lifetime for Detecting Breath Ammonia in Hemodialysis Patients. ACS Sens 2017;2:1788-95. [PMID: 29124925 DOI: 10.1021/acssensors.7b00564] [Cited by in Crossref: 59] [Cited by in F6Publishing: 45] [Article Influence: 11.8] [Reference Citation Analysis]
21 Saasa V, Malwela T, Beukes M, Mokgotho M, Liu CP, Mwakikunga B. Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring. Diagnostics (Basel) 2018;8:E12. [PMID: 29385067 DOI: 10.3390/diagnostics8010012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 28] [Article Influence: 15.3] [Reference Citation Analysis]
22 Banik GD, Maity A, Som S, Pal M, Pradhan M. An external-cavity quantum cascade laser operating near 5.2 µ m combined with cavity ring-down spectroscopy for multi-component chemical sensing. Laser Phys 2018;28:045701. [DOI: 10.1088/1555-6611/aaaa55] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
23 Hagemann LT, Repp S, Mizaikoff B. Hybrid Analytical Platform Based on Field-Asymmetric Ion Mobility Spectrometry, Infrared Sensing, and Luminescence-Based Oxygen Sensing for Exhaled Breath Analysis. Sensors (Basel) 2019;19:E2653. [PMID: 31212768 DOI: 10.3390/s19122653] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
24 Zhang J, Tian Y, Luo Z, Qian C, Li W, Duan Y. Breath volatile organic compound analysis: an emerging method for gastric cancer detection. J Breath Res 2021;15. [PMID: 34610588 DOI: 10.1088/1752-7163/ac2cde] [Reference Citation Analysis]
25 Sánchez C, Santos JP, Lozano J. Use of Electronic Noses for Diagnosis of Digestive and Respiratory Diseases through the Breath. Biosensors (Basel) 2019;9:E35. [PMID: 30823459 DOI: 10.3390/bios9010035] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
26 Kundu S, Kumar A. Low concentration ammonia sensing performance of Pd incorporated indium tin oxide. Journal of Alloys and Compounds 2019;780:245-55. [DOI: 10.1016/j.jallcom.2018.11.201] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
27 Liu C, Yen Nhi NP, Sun Y, Meng H, Zan H, Chen L, Huang Z, Tian Y, Lai C. Using light-emitting complex Ir(mppy)3 to detect acetone from 0.5 to 100 ppm by vertical-channel gas sensor. Organic Electronics 2022. [DOI: 10.1016/j.orgel.2022.106507] [Reference Citation Analysis]
28 Barnes JW, Tonelli AR, Heresi GA, Newman JE, Mellor NE, Grove DE, Dweik RA. Novel methods in pulmonary hypertension phenotyping in the age of precision medicine (2015 Grover Conference series). Pulm Circ 2016;6:439-47. [PMID: 28090286 DOI: 10.1086/688847] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
29 Suchorska-Woźniak P, Rac O, Fiedot M, Teterycz H. The Impact of Sepiolite on Sensor Parameters during the Detection of Low Concentrations of Alcohols. Sensors (Basel) 2016;16:E1881. [PMID: 27834879 DOI: 10.3390/s16111881] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
30 Raninen K, Nenonen R, Järvelä-Reijonen E, Poutanen K, Mykkänen H, Raatikainen O. Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry Analysis of Exhaled Breath Compounds after Whole Grain Diets. Molecules 2021;26:2667. [PMID: 34063191 DOI: 10.3390/molecules26092667] [Reference Citation Analysis]
31 Ishida J, Oikawa T, Nakagawa C, Takano K, Fujioka K, Kikuchi Y, Tsuboi O, Ueda K, Nakano M, Saeki C, Torisu Y, Ikeda Y, Saruta M, Tsubota A. Real-time breath ammonia measurement using a novel cuprous bromide sensor device in patients with chronic liver disease: a feasibility and pilot study. J Breath Res 2021;15:026010. [PMID: 33527916 DOI: 10.1088/1752-7163/abb477] [Reference Citation Analysis]
32 Slingers G, Goossens R, Janssens H, Spruyt M, Goelen E, Vanden EM, Raes M, Koppen G. Real-time selected ion flow tube mass spectrometry to assess short- and long-term variability in oral and nasal breath. J Breath Res 2020;14:036006. [PMID: 32422613 DOI: 10.1088/1752-7163/ab9423] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
33 Kim C, Raja IS, Lee JM, Lee JH, Kang MS, Lee SH, Oh JW, Han DW. Recent Trends in Exhaled Breath Diagnosis Using an Artificial Olfactory System. Biosensors (Basel) 2021;11:337. [PMID: 34562928 DOI: 10.3390/bios11090337] [Reference Citation Analysis]
34 Demichelis A, Pascale C, Lecuna M, Niederhauser B, Sassi G, Sassi MP. Compact devices for generation of reference trace VOC mixtures: a new concept in assuring quality at chemical and biochemical laboratories. Anal Bioanal Chem 2018;410:2619-28. [PMID: 29468292 DOI: 10.1007/s00216-018-0935-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
35 Wang K, Hsieh J, Chen C, Zan H, Meng H, Kuo S, Nguyễn MTN. A low-cost, portable and easy-operated salivary urea sensor for point-of-care application. Biosensors and Bioelectronics 2019;132:352-9. [DOI: 10.1016/j.bios.2019.03.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
36 Wasilewski T, Brito NF, Szulczyński B, Wojciechowski M, Buda N, Melo ACA, Kamysz W, Gębicki J. Olfactory Receptor-based Biosensors as Potential Future Tools in Medical Diagnosis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116599] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Welearegay TG, Diouani MF, Österlund L, Ionescu F, Belgacem K, Smadhi H, Khaled S, Kidar A, Cindemir U, Laouini D, Ionescu R. Ligand-Capped Ultrapure Metal Nanoparticle Sensors for the Detection of Cutaneous Leishmaniasis Disease in Exhaled Breath. ACS Sens 2018;3:2532-40. [PMID: 30403135 DOI: 10.1021/acssensors.8b00759] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
38 Capone S, Tufariello M, Forleo A, Longo V, Giampetruzzi L, Radogna AV, Casino F, Siciliano P. Chromatographic analysis of VOC patterns in exhaled breath from smokers and nonsmokers. Biomed Chromatogr 2018;32. [PMID: 29131420 DOI: 10.1002/bmc.4132] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
39 Li W, Dai W, Liu M, Long Y, Wang C, Xie S, Liu Y, Zhang Y, Shi Q, Peng X, Liu Y, Li Q, Duan Y. VOC biomarkers identification and predictive model construction for lung cancer based on exhaled breath analysis: research protocol for an exploratory study. BMJ Open 2019;9:e028448. [PMID: 31399453 DOI: 10.1136/bmjopen-2018-028448] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
40 [DOI: 10.1109/rfid-ta.2017.8098641] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
41 Wei S, Li S, Wei R, Liu S, Du W. Different morphologies of WO3 and their exposed facets-dependent acetone sensing properties. Sensors and Actuators B: Chemical 2021;329:129188. [DOI: 10.1016/j.snb.2020.129188] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 18.0] [Reference Citation Analysis]
42 Rothbart N, Holz O, Koczulla R, Schmalz K, Hübers HW. Analysis of Human Breath by Millimeter-Wave/Terahertz Spectroscopy. Sensors (Basel) 2019;19:E2719. [PMID: 31212999 DOI: 10.3390/s19122719] [Cited by in Crossref: 20] [Cited by in F6Publishing: 7] [Article Influence: 6.7] [Reference Citation Analysis]
43 Natkaeo A, Phokharatkul D, Hodak JH, Wisitsoraat A, Hodak SK. Highly selective sub–10 ppm H2S gas sensors based on Ag-doped CaCu3Ti4O12 films. Sensors and Actuators B: Chemical 2018;260:571-80. [DOI: 10.1016/j.snb.2017.12.134] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
44 Oakley-Girvan I, Davis SW. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: A systematic review. Cancer Biomark 2017;21:29-39. [PMID: 29060925 DOI: 10.3233/CBM-170177] [Cited by in Crossref: 24] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
45 Sharma N, Sharma N, Srinivasan P, Kumar S, Balaguru Rayappan JB, Kailasam K. Heptazine based organic framework as a chemiresistive sensor for ammonia detection at room temperature. J Mater Chem A 2018;6:18389-95. [DOI: 10.1039/c8ta06937a] [Cited by in Crossref: 27] [Article Influence: 6.8] [Reference Citation Analysis]
46 Haas J, Catalán EV, Piron P, Karlsson M, Mizaikoff B. Infrared spectroscopy based on broadly tunable quantum cascade lasers and polycrystalline diamond waveguides. Analyst 2018;143:5112-9. [DOI: 10.1039/c8an00919h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
47 Dumitras DC, Petrus M, Bratu AM, Popa C. Applications of Near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules 2020;25:E1728. [PMID: 32283766 DOI: 10.3390/molecules25071728] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
48 Khan RMM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y. From Pre-Diabetes to Diabetes: Diagnosis, Treatments and Translational Research. Medicina (Kaunas). 2019;55. [PMID: 31470636 DOI: 10.3390/medicina55090546] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 10.3] [Reference Citation Analysis]
49 Wei S, Zhao G, Du W, Tian Q. Synthesis and excellent acetone sensing properties of porous WO 3 nanofibers. Vacuum 2016;124:32-9. [DOI: 10.1016/j.vacuum.2015.11.010] [Cited by in Crossref: 54] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
50 Kalidoss R, Kothalam R, Manikandan A, Jaganathan SK, Khan A, Asiri AM. Socio-economic demands and challenges for non-invasive disease diagnosis through a portable breathalyzer by the incorporation of 2D nanosheets and SMO nanocomposites. RSC Adv 2021;11:21216-34. [PMID: 35478818 DOI: 10.1039/d1ra02554f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 13.0] [Reference Citation Analysis]
51 Abdulla S, Dhakshinamoorthy J, Mohan V, Veeran Ponnuvelu D, Krishnan Kallidaikuruchi V, Mathew Thalakkotil L, Pullithadathil B. Development of low-cost hybrid multi-walled carbon nanotube-based ammonia gas-sensing strips with an integrated sensor read-out system for clinical breath analyzer applications. J Breath Res 2019;13:046005. [PMID: 31170701 DOI: 10.1088/1752-7163/ab278b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
52 Smith AF, Liu X, Woodard TL, Fu T, Emrick T, Jiménez JM, Lovley DR, Yao J. Bioelectronic protein nanowire sensors for ammonia detection. Nano Res 2020;13:1479-84. [DOI: 10.1007/s12274-020-2825-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]