BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Barbillon G. Fabrication and SERS Performances of Metal/Si and Metal/ZnO Nanosensors: A Review. Coatings 2019;9:86. [DOI: 10.3390/coatings9020086] [Cited by in Crossref: 26] [Cited by in F6Publishing: 4] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Park S, Nguyen DV, Kang L. Immobilized nanoneedle-like structures for intracellular delivery, biosensing and cellular surgery. Nanomedicine (Lond) 2021;16:335-49. [PMID: 33533658 DOI: 10.2217/nnm-2020-0337] [Reference Citation Analysis]
2 Yin Y, Li C, Yan Y, Xiong W, Ren J, Luo W. MoS2-Based Substrates for Surface-Enhanced Raman Scattering: Fundamentals, Progress and Perspective. Coatings 2022;12:360. [DOI: 10.3390/coatings12030360] [Reference Citation Analysis]
3 Vo V, Gwon Y, Phung V, Son Y, Kim J, Lee S. Ag-Deposited Porous Silicon as a SERS-Active Substrate for the Sensitive Detection of Catecholamine Neurotransmitters. Electron Mater Lett 2021;17:292-8. [DOI: 10.1007/s13391-021-00281-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Barbillon G, Ivanov A, Sarychev AK. Applications of Symmetry Breaking in Plasmonics. Symmetry 2020;12:896. [DOI: 10.3390/sym12060896] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
5 Adesoye S, Dellinger K. ZnO and TiO2 nanostructures for surface-enhanced Raman scattering-based biosensing: A review. Sensing and Bio-Sensing Research 2022. [DOI: 10.1016/j.sbsr.2022.100499] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Mandal P, Tewari B. Progress in surface enhanced Raman scattering molecular sensing: A review. Surfaces and Interfaces 2022;28:101655. [DOI: 10.1016/j.surfin.2021.101655] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Shumskaya A, Kozhina E, Bedin S, Andreev S, Kulesh E, Rogachev A, Yarmolenko M, Korolkov I, Kozlovskiy A, Zdorovets M, Belyaev V, Rodionova V, Panina L. Detection of Polynitro Compounds at Low Concentrations by SERS Using Ni@Au Nanotubes. Chemosensors 2022;10:306. [DOI: 10.3390/chemosensors10080306] [Reference Citation Analysis]
8 Proniewicz E, Tąta A, Wójcik A, Starowicz M, Pacek J, Molenda M. SERS activity and spectroscopic properties of Zn and ZnO nanostructures obtained by electrochemical and green chemistry methods for applications in biology and medicine. Phys Chem Chem Phys 2020;22:28100-14. [DOI: 10.1039/d0cp03517c] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sarychev AK, Bykov IV, Boginskaya IA, Ivanov AV, Kurochkin IN, Lagarkov AN, Nechaeva NL, Ryzhikov IA. Metal-dielectric optical resonance in metasurfaces and SERS effect. Opt Quant Electron 2020;52. [DOI: 10.1007/s11082-019-2141-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Vendamani VS, Rao SVSN, Pathak AP, Soma VR. Silicon Nanostructures for Molecular Sensing: A Review. ACS Appl Nano Mater 2022;5:4550-82. [DOI: 10.1021/acsanm.1c04569] [Reference Citation Analysis]
11 Vo V, Phung V, Lee S. Nanosilver-embedded silicon nanowires as a SERS-active substrate for the ultrasensitive detection of monoamine neurotransmitters. Surfaces and Interfaces 2021;25:101181. [DOI: 10.1016/j.surfin.2021.101181] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Liao W, Liu K, Chen Y, Hu J, Gan Y. Au–Ag bimetallic nanoparticles decorated silicon nanowires with fixed and dynamic hot spots for ultrasensitive 3D SERS sensing. Journal of Alloys and Compounds 2021;868:159136. [DOI: 10.1016/j.jallcom.2021.159136] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
13 Ogundare SA, van Zyl WE. A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose 2019;26:6489-528. [DOI: 10.1007/s10570-019-02580-0] [Cited by in Crossref: 42] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
14 Bae, Yu, Jung, Lee, Choi. Cost-Effective and High-Throughput Plasmonic Interference Coupled Nanostructures by Using Quasi-Uniform Anodic Aluminum Oxide. Coatings 2019;9:420. [DOI: 10.3390/coatings9070420] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Starinskiy SV, Safonov AI, Shukhov YG, Sulyeva VS, Korolkov IV, Volodin VA, Kibis LS, Bulgakov AV. Nanostructured silver substrates produced by cluster-assisted gas jet deposition for surface-enhanced Raman spectroscopy. Vacuum 2022;199:110929. [DOI: 10.1016/j.vacuum.2022.110929] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Al-mahamad LL. Gold nanoparticles driven self-assembling hydrogel via Host–Guest system. Journal of Molecular Structure 2020;1200:127063. [DOI: 10.1016/j.molstruc.2019.127063] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ha Pham TT, Vu XH, Dien ND, Trang TT, Kim Chi TT, Phuong PH, Nghia NT. Ag nanoparticles on ZnO nanoplates as a hybrid SERS-active substrate for trace detection of methylene blue. RSC Adv 2022;12:7850-63. [DOI: 10.1039/d2ra00620k] [Reference Citation Analysis]
18 Kim Y, Gupta P, Kim K. Controlling the Multiscale Topography of Anodized Aluminum Oxide Nanowire Structures for Surface-Enhanced Raman Scattering and Perfect Absorbers. ACS Appl Mater Interfaces 2020;12:58390-402. [DOI: 10.1021/acsami.0c18138] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]