BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020;9:E2604. [PMID: 33291725 DOI: 10.3390/cells9122604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Han Y, Zhao Y, Wang H, Huo L. Case Report: Novel TRPM6 Mutations Cause Hereditary Hypomagnesemia With Secondary Hypocalcemia in a Chinese Family and a Literature Review. Front Pediatr 2022;10:912524. [DOI: 10.3389/fped.2022.912524] [Reference Citation Analysis]
2 Sander S, Pick J, Gattkowski E, Fliegert R, Tidow H. The crystal structure of TRPM2 MHR1 /2 domain reveals a conserved Zn 2+ ‐binding domain essential for structural integrity and channel activity. Protein Science 2022;31. [DOI: 10.1002/pro.4320] [Reference Citation Analysis]
3 Sousza Bomfim GH, Niemeyer BA, Lacruz RS, Lis A. On the Connections between TRPM Channels and SOCE. Cells 2022;11:1190. [DOI: 10.3390/cells11071190] [Reference Citation Analysis]
4 Ma L, Liu X, Liu Q, Jin S, Chang H, Liu H. The Roles of Transient Receptor Potential Ion Channels in Pathologies of Glaucoma. Front Physiol 2022;13:806786. [DOI: 10.3389/fphys.2022.806786] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Kovács ZM, Dienes C, Hézső T, Almássy J, Magyar J, Bányász T, Nánási PP, Horváth B, Szentandrássy N. Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 1: Modulation of TRPM4. Pharmaceuticals 2022;15:81. [DOI: 10.3390/ph15010081] [Reference Citation Analysis]
6 Chen YW, Yang M, Wang MX, Jiang JH, Jiang DY, Chen ZL, Yang L. Refractory hypokalemia caused by cetuximab with advanced colorectal cancer patients: the case series and literature review. Anticancer Drugs 2022;33:e789-94. [PMID: 34419963 DOI: 10.1097/CAD.0000000000001212] [Reference Citation Analysis]
7 Dienes C, Kovács ZM, Hézső T, Almássy J, Magyar J, Bányász T, Nánási PP, Horváth B, Szentandrássy N. Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel-Part 2: TRPM4 in Health and Disease. Pharmaceuticals (Basel) 2021;15:40. [PMID: 35056097 DOI: 10.3390/ph15010040] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Qiu Y, Xue XJ, Liu G, Shen MM, Chao CY, Zhang J, Guo YQ, Niu QQ, Yu YN, Song YT, Wang HH, Wang SX, Chen YJ, Jiang LH, Li P, Yin YL. Perillaldehyde improves cognitive function in vivo and in vitro by inhibiting neuronal damage via blocking TRPM2/NMDAR pathway. Chin Med 2021;16:136. [PMID: 34903262 DOI: 10.1186/s13020-021-00545-9] [Reference Citation Analysis]
9 Du Preez S, Cabanas H, Staines D, Marshall-Gradisnik S. Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review. Int J Environ Res Public Health 2021;18:10708. [PMID: 34682454 DOI: 10.3390/ijerph182010708] [Reference Citation Analysis]
10 Hellenthal KEM, Brabenec L, Gross ER, Wagner NM. TRP Channels as Sensors of Aldehyde and Oxidative Stress. Biomolecules 2021;11:1401. [PMID: 34680034 DOI: 10.3390/biom11101401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
11 Alemán OR, Mora N, Rosales C. The Antibody Receptor Fc Gamma Receptor IIIb Induces Calcium Entry via Transient Receptor Potential Melastatin 2 in Human Neutrophils. Front Immunol 2021;12:657393. [PMID: 34054821 DOI: 10.3389/fimmu.2021.657393] [Reference Citation Analysis]