BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wolf C, López Del Amo V, Arndt S, Bueno D, Tenzer S, Hanschmann EM, Berndt C, Methner A. Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery. Cells 2020;9:E815. [PMID: 32230997 DOI: 10.3390/cells9040815] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Liu J, He X, Zheng S, Zhu A, Wang J, Ding Y. The Mitochondrial Unfolded Protein Response: A Novel Protective Pathway Targeting Cardiomyocytes. Oxidative Medicine and Cellular Longevity 2022;2022:1-19. [DOI: 10.1155/2022/6430342] [Reference Citation Analysis]
2 Chen H, Chen F, Jiang Y, Zhang L, Hu G, Sun F, Zhang M, Ji Y, Chen Y, Che G, Zhou X, Zhang Y. A Review of ApoE4 Interference Targeting Mitophagy Molecular Pathways for Alzheimer's Disease. Front Aging Neurosci 2022;14:881239. [DOI: 10.3389/fnagi.2022.881239] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Wang L, Wang Z, You W, Yu Z, Li X, Shen H, Li H, Sun Q, Li W, Chen G. Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of Drp1 and reduces neuronal apoptosis in experimental subarachnoid hemorrhage both in vivo and in vitro. Brain Res Bull 2022:S0361-9230(22)00079-X. [PMID: 35304287 DOI: 10.1016/j.brainresbull.2022.03.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Sonn SK, Seo S, Yang J, Oh KS, Chen H, Chan DC, Rhee K, Lee KS, Yang Y, Oh GT. ER-associated CTRP1 regulates mitochondrial fission via interaction with DRP1. Exp Mol Med 2021;53:1769-80. [PMID: 34837016 DOI: 10.1038/s12276-021-00701-z] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
5 Alalaiwe A, Chen CY, Chang ZY, Sung JT, Chuang SY, Fang JY. Psoriasiform Inflammation Is Associated with Mitochondrial Fission/GDAP1L1 Signaling in Macrophages. Int J Mol Sci 2021;22:10410. [PMID: 34638757 DOI: 10.3390/ijms221910410] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
6 Li D, Yang S, Xing Y, Pan L, Zhao R, Zhao Y, Liu L, Wu M. Novel Insights and Current Evidence for Mechanisms of Atherosclerosis: Mitochondrial Dynamics as a Potential Therapeutic Target. Front Cell Dev Biol 2021;9:673839. [PMID: 34307357 DOI: 10.3389/fcell.2021.673839] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
7 Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. Biology (Basel) 2021;10:268. [PMID: 33810506 DOI: 10.3390/biology10040268] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Hongbo M, Yanjiao D, Shuo W, Kun S, Yanjie L, Mengmeng L. Podocyte RNF166 deficiency alleviates diabetic nephropathy by mitigating mitochondria impairment and apoptosis via regulation of CYLD signal. Biochem Biophys Res Commun 2021;545:46-53. [PMID: 33545631 DOI: 10.1016/j.bbrc.2020.12.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Boraldi F, Lofaro FD, Quaglino D. Apoptosis in the Extraosseous Calcification Process. Cells 2021;10:131. [PMID: 33445441 DOI: 10.3390/cells10010131] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
10 Bassot A, Chen J, Simmen T. Post-Translational Modification of Cysteines: A Key Determinant of Endoplasmic Reticulum-Mitochondria Contacts (MERCs). Contact 2021;4:251525642110012. [DOI: 10.1177/25152564211001213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Alevriadou BR, Patel A, Noble M, Ghosh S, Gohil VM, Stathopulos PB, Madesh M. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol 2021;320:C465-82. [PMID: 33296287 DOI: 10.1152/ajpcell.00502.2020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
12 Martinez-Banaclocha M. Proteomic Complexity in Parkinson's Disease: A Redox Signaling Perspective of the Pathophysiology and Progression. Neuroscience 2021;453:287-300. [PMID: 33212217 DOI: 10.1016/j.neuroscience.2020.11.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, Bringas-Vega ML, García-Del-Barco-Herrera D, Berlanga-Saez JO, García-Ojalvo A, Valdés-Sosa MJ, Valdés-Sosa PA. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne) 2020;11:560375. [PMID: 33224105 DOI: 10.3389/fendo.2020.560375] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
14 Lorenzen I, Eble JA, Hanschmann EM. Thiol switches in membrane proteins - Extracellular redox regulation in cell biology. Biol Chem 2021;402:253-69. [PMID: 33108336 DOI: 10.1515/hsz-2020-0266] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
15 Berry BJ, Baldzizhar A, Nieves TO, Wojtovich AP. Neuronal AMPK coordinates mitochondrial energy sensing and hypoxia resistance in C. elegans. FASEB J 2020;34:16333-47. [PMID: 33058299 DOI: 10.1096/fj.202001150RR] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
16 Jin Z, Zhang Q, Wondimu E, Verma R, Fu M, Shuang T, Arif HM, Wu L, Wang R. H2S-stimulated bioenergetics in chicken erythrocytes and the underlying mechanism. Am J Physiol Regul Integr Comp Physiol 2020;319:R69-78. [PMID: 32432916 DOI: 10.1152/ajpregu.00348.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]