BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chhunchha B, Kubo E, Singh DP. Sulforaphane-Induced Klf9/Prdx6 Axis Acts as a Molecular Switch to Control Redox Signaling and Determines Fate of Cells. Cells 2019;8:E1159. [PMID: 31569690 DOI: 10.3390/cells8101159] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Puente-Cobacho B, Varela-López A, Quiles JL, Vera-Ramirez L. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev 2023;42:49-85. [PMID: 36701089 DOI: 10.1007/s10555-022-10077-9] [Reference Citation Analysis]
2 Chhunchha B, Kubo E, Krueger RR, Singh DP. Hydralazine Revives Cellular and Ocular Lens Health-Span by Ameliorating the Aging and Oxidative-Dependent Loss of the Nrf2-Activated Cellular Stress Response. Antioxidants (Basel) 2023;12. [PMID: 36671002 DOI: 10.3390/antiox12010140] [Reference Citation Analysis]
3 Jia W, Dong C, Li B. Anti-Oxidant and Pro-Oxidant Effects of Peroxiredoxin 6: A Potential Target in Respiratory Diseases. Cells 2023;12. [PMID: 36611974 DOI: 10.3390/cells12010181] [Reference Citation Analysis]
4 Zhou Y, Chen Y, Zhong X, Xia H, Zhao M, Zhao M, Xu L, Guo X, You CG. Lipoxin A4 attenuates MSU-crystal-induced NLRP3 inflammasome activation through suppressing Nrf2 thereby increasing TXNRD2. Front Immunol 2022;13:1060441. [PMID: 36569930 DOI: 10.3389/fimmu.2022.1060441] [Reference Citation Analysis]
5 Chhunchha B, Kubo E, Singh DP. Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity. Cells 2022;11:3021. [DOI: 10.3390/cells11193021] [Reference Citation Analysis]
6 Ferrer JLM, Garcia RL. Antioxidant Systems, lncRNAs, and Tunneling Nanotubes in Cell Death Rescue from Cigarette Smoke Exposure. Cells 2022;11:2277. [DOI: 10.3390/cells11152277] [Reference Citation Analysis]
7 Hao W, Li M, Cai Q, Wu S, Li X, He Q, Hu Y. Roles of NRF2 in Fibrotic Diseases: From Mechanisms to Therapeutic Approaches. Front Physiol 2022;13:889792. [DOI: 10.3389/fphys.2022.889792] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Chhunchha B, Kubo E, Singh DP. Switching of Redox Signaling by Prdx6 Expression Decides Cellular Fate by Hormetic Phenomena Involving Nrf2 and Reactive Oxygen Species. Cells 2022;11. [PMID: 35455944 DOI: 10.3390/cells11081266] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Kim SY. Oxidative Stress and Gender Disparity in Cancer. Free Radic Res 2022;:1-39. [PMID: 35118928 DOI: 10.1080/10715762.2022.2038789] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Szeliga M. Comprehensive analysis of the expression levels and prognostic values of PRDX family genes in glioma. Neurochem Int 2021;:105256. [PMID: 34968631 DOI: 10.1016/j.neuint.2021.105256] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
11 Huynh TPN, Bowater RP, Bernuzzi F, Saha S, Wormstone IM. GSH Levels Serve As a Biological Redox Switch Regulating Sulforaphane-Induced Cell Fate in Human Lens Cells. Invest Ophthalmol Vis Sci 2021;62:2. [PMID: 34854886 DOI: 10.1167/iovs.62.15.2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Chen W, Ye Y, Wu Z, Lin J, Wang Y, Ding Q, Yang X, Yang W, Lin B, Lin B. Temporary Upregulation of Nrf2 by Naringenin Alleviates Oxidative Damage in the Retina and ARPE-19 Cells. Oxid Med Cell Longev 2021;2021:4053276. [PMID: 34840667 DOI: 10.1155/2021/4053276] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. NRF2 Activation and Downstream Effects: Focus on Parkinson's Disease and Brain Angiotensin. Antioxidants (Basel) 2021;10:1649. [PMID: 34829520 DOI: 10.3390/antiox10111649] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
14 Gan L, Yao L, Zhang M, He K, Zhang H, Lin Y, Qin C, Shao J, Jiang H, Wen M. Ammonia triggers ferroptosis in macrophages of yellow catfish Pelteobagrus fulvidraco. Aquaculture Research 2022;53:568-75. [DOI: 10.1111/are.15600] [Reference Citation Analysis]
15 Chhunchha B, Kubo E, Kompella UB, Singh DP. Engineered Sumoylation-Deficient Prdx6 Mutant Protein-Loaded Nanoparticles Provide Increased Cellular Defense and Prevent Lens Opacity. Antioxidants (Basel) 2021;10:1245. [PMID: 34439493 DOI: 10.3390/antiox10081245] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Karpenko IL, Valuev-Elliston VT, Ivanova ON, Smirnova OA, Ivanov AV. Peroxiredoxins-The Underrated Actors during Virus-Induced Oxidative Stress. Antioxidants (Basel) 2021;10:977. [PMID: 34207367 DOI: 10.3390/antiox10060977] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
17 Liu H, Xing R, Ou Z, Zhao J, Hong G, Zhao TJ, Han Y, Chen Y. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis 2021;12:610. [PMID: 34120140 DOI: 10.1038/s41419-021-03897-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
18 Zhang Q, Hu Y, Hu JE, Ding Y, Shen Y, Xu H, Chen H, Wu N. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis. Life Sci 2021;278:119529. [PMID: 33894270 DOI: 10.1016/j.lfs.2021.119529] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 11.0] [Reference Citation Analysis]
19 Cristofano M D, A F, Giacomo M D, C F, F B, D L, Rotondi Aufiero V, F M, E C, G M, V Z, M R, P B. Mechanisms underlying the hormetic effect of conjugated linoleic acid: Focus on Nrf2, mitochondria and NADPH oxidases. Free Radic Biol Med 2021;167:276-86. [PMID: 33753237 DOI: 10.1016/j.freeradbiomed.2021.03.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
20 Li H, Weng Y, Lai L, Lei H, Xu S, Zhang Y, Li L. KLF9 regulates PRDX6 expression in hyperglycemia-aggravated bupivacaine neurotoxicity. Mol Cell Biochem 2021;476:2125-34. [PMID: 33547545 DOI: 10.1007/s11010-021-04059-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Elgohary S, Elkhodiry AA, Amin NS, Stein U, El Tayebi HM. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021;10:302. [PMID: 33540625 DOI: 10.3390/cells10020302] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
22 Fernández-Ortiz M, Sayed RKA, Fernández-Martínez J, Cionfrini A, Aranda-Martínez P, Escames G, de Haro T, Acuña-Castroviejo D. Melatonin/Nrf2/NLRP3 Connection in Mouse Heart Mitochondria during Aging. Antioxidants (Basel) 2020;9:E1187. [PMID: 33260800 DOI: 10.3390/antiox9121187] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
23 Martinovich GG, Martinovich IV, Vcherashniaya AV, Zenkov NK, Menshchikova EB, Cherenkevich SN. Chemosensitization of Tumor Cells by Phenolic Antioxidants: The Role of the Nrf2 Transcription Factor. BIOPHYSICS 2020;65:920-930. [DOI: 10.1134/s000635092006010x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell 2020;38:167-97. [PMID: 32649885 DOI: 10.1016/j.ccell.2020.06.001] [Cited by in Crossref: 695] [Cited by in F6Publishing: 367] [Article Influence: 231.7] [Reference Citation Analysis]
25 Chhunchha B, Kubo E, Singh DP. Clock Protein Bmal1 and Nrf2 Cooperatively Control Aging or Oxidative Response and Redox Homeostasis by Regulating Rhythmic Expression of Prdx6. Cells 2020;9:E1861. [PMID: 32784474 DOI: 10.3390/cells9081861] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
26 Mendonca P, Soliman KFA. Flavonoids Activation of the Transcription Factor Nrf2 as a Hypothesis Approach for the Prevention and Modulation of SARS-CoV-2 Infection Severity. Antioxidants (Basel) 2020;9:E659. [PMID: 32722164 DOI: 10.3390/antiox9080659] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
27 Wang MX, Zhao J, Zhang H, Li K, Niu LZ, Wang YP, Zheng YJ. Potential Protective and Therapeutic Roles of the Nrf2 Pathway in Ocular Diseases: An Update. Oxid Med Cell Longev 2020;2020:9410952. [PMID: 32273949 DOI: 10.1155/2020/9410952] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
28 Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K. Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology. Biomolecules 2020;10:E320. [PMID: 32079324 DOI: 10.3390/biom10020320] [Cited by in Crossref: 128] [Cited by in F6Publishing: 140] [Article Influence: 42.7] [Reference Citation Analysis]
29 Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Back to Nucleus: Combating with Cadmium Toxicity Using Nrf2 Signaling Pathway as a Promising Therapeutic Target. Biol Trace Elem Res 2020;197:52-62. [PMID: 31786752 DOI: 10.1007/s12011-019-01980-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]