BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DT. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019;8:E1055. [PMID: 31500396 DOI: 10.3390/cells8091055] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 15.3] [Reference Citation Analysis]
Number Citing Articles
1 Song X, Long D. Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases. Front Neurosci 2020;14:267. [PMID: 32372896 DOI: 10.3389/fnins.2020.00267] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 16.5] [Reference Citation Analysis]
2 Persad KL, Lopaschuk GD. Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Front Cell Dev Biol 2022;10:886393. [DOI: 10.3389/fcell.2022.886393] [Reference Citation Analysis]
3 Husain N, Hasan S, Khan AA, Mahmood R. Copper chloride inhibits brush border membrane enzymes, alters antioxidant and metabolic status and damages DNA in rat intestine: a dose-dependent study. Environ Sci Pollut Res Int 2021;28:43711-24. [PMID: 33837945 DOI: 10.1007/s11356-021-13804-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Yen WC, Wu YH, Wu CC, Lin HR, Stern A, Chen SH, Shu JC, Tsun-Yee Chiu D. Impaired inflammasome activation and bacterial clearance in G6PD deficiency due to defective NOX/p38 MAPK/AP-1 redox signaling. Redox Biol 2020;28:101363. [PMID: 31707353 DOI: 10.1016/j.redox.2019.101363] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
5 Xu H, Hu L, Liu T, Chen F, Li J, Xu J, Jiang L, Xiang Z, Wang X, Sheng J. Caffeine Targets G6PDH to Disrupt Redox Homeostasis and Inhibit Renal Cell Carcinoma Proliferation. Front Cell Dev Biol 2020;8:556162. [PMID: 33123534 DOI: 10.3389/fcell.2020.556162] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Ju HQ, Lin JF, Tian T, Xie D, Xu RH. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther 2020;5:231. [PMID: 33028807 DOI: 10.1038/s41392-020-00326-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
7 Guler SA, Machahua C, Geiser TK, Kocher G, Marti TM, Tan B, Trappetti V, Ryerson CJ, Funke-Chambour M. Dehydroepiandrosterone in fibrotic interstitial lung disease: a translational study. Respir Res 2022;23:149. [PMID: 35676709 DOI: 10.1186/s12931-022-02076-9] [Reference Citation Analysis]
8 Liu X, Zhang Y, Zhuang L, Olszewski K, Gan B. NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Dis 2021;8:731-45. [PMID: 34522704 DOI: 10.1016/j.gendis.2020.11.010] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
9 Mao Q, Luo B, Mei J, Li W, Zhang X, Wang Z, Zhang J, Liu T, Zhang F, Zhang Z. Macrophage Dicer promotes tolerogenic apoptotic cell clearance and immune tolerance by inhibiting pentose phosphate pathway activity. Cell Mol Immunol 2021;18:1841-3. [PMID: 34007029 DOI: 10.1038/s41423-021-00693-w] [Reference Citation Analysis]
10 Idres YA, Tousch D, Cazals G, Lebrun A, Naceri S, Bidel LPR, Poucheret P. A Novel Sesquiterpene Lactone Xanthatin-13-(pyrrolidine-2-carboxylic acid) Isolated from Burdock Leaf Up-Regulates Cells' Oxidative Stress Defense Pathway. Antioxidants (Basel) 2021;10:1617. [PMID: 34679753 DOI: 10.3390/antiox10101617] [Reference Citation Analysis]
11 Carpenter EL, Becker AL, Indra AK. NRF2 and Key Transcriptional Targets in Melanoma Redox Manipulation. Cancers (Basel) 2022;14:1531. [PMID: 35326683 DOI: 10.3390/cancers14061531] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Kanwal L, Ali S, Rasul A, Muhammad Tahir H. Smilax china root extract as a novel Glucose- 6-phosphate dehydrogenase inhibitor for the treatment of hepatocellular carcinoma. Saudi Journal of Biological Sciences 2022. [DOI: 10.1016/j.sjbs.2022.103400] [Reference Citation Analysis]
13 Taddei ML, Pardella E, Pranzini E, Raugei G, Paoli P. Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2020;1874:188442. [DOI: 10.1016/j.bbcan.2020.188442] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Yang HC, Stern A, Chiu DT. G6PD: A hub for metabolic reprogramming and redox signaling in cancer. Biomed J 2021;44:285-92. [PMID: 33097441 DOI: 10.1016/j.bj.2020.08.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Buinitskaya Y, Gurinovich R, Wlodaver CG, Kastsiuchenka S. Centrality of G6PD in COVID-19: The Biochemical Rationale and Clinical Implications. Front Med (Lausanne) 2020;7:584112. [PMID: 33195336 DOI: 10.3389/fmed.2020.584112] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
16 Zhang Q, Ni Y, Wang S, Agbana YL, Han Q, Liu W, Bai H, Yi Z, Yi X, Zhu Y, Sai B, Yang L, Shi Q, Kuang Y, Yang Z, Zhu Y. G6PD upregulates Cyclin E1 and MMP9 to promote clear cell renal cell carcinoma progression. Int J Med Sci 2022;19:47-64. [PMID: 34975298 DOI: 10.7150/ijms.58902] [Reference Citation Analysis]
17 Nakamura M, Nagase K, Yoshimitsu M, Magara T, Nojiri Y, Kato H, Kobayashi T, Teramoto Y, Yasuda M, Wada H, Ozawa T, Umemori Y, Ogata D, Morita A. Glucose-6-phosphate dehydrogenase correlates with tumor immune activity and programmed death ligand-1 expression in Merkel cell carcinoma. J Immunother Cancer 2020;8:e001679. [PMID: 33361404 DOI: 10.1136/jitc-2020-001679] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
18 Zhang Q, Han Q, Yang Z, Ni Y, Agbana YL, Bai H, Yi Z, Yi X, Kuang Y, Zhu Y. G6PD facilitates clear cell renal cell carcinoma invasion by enhancing MMP2 expression through ROS‑MAPK axis pathway. Int J Oncol 2020;57:197-212. [PMID: 32319593 DOI: 10.3892/ijo.2020.5041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Chen PH, Tjong WY, Yang HC, Liu HY, Stern A, Chiu DT. Glucose-6-Phosphate Dehydrogenase, Redox Homeostasis and Embryogenesis. Int J Mol Sci 2022;23:2017. [PMID: 35216131 DOI: 10.3390/ijms23042017] [Reference Citation Analysis]
20 De Oliveira MP, Liesa M. The Role of Mitochondrial Fat Oxidation in Cancer Cell Proliferation and Survival. Cells 2020;9:E2600. [PMID: 33291682 DOI: 10.3390/cells9122600] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 Wang A, Chen B, Jian S, Cai W, Xiao M, Du G. miR-206-G6PD axis regulates lipogenesis and cell growth in hepatocellular carcinoma cell. Anticancer Drugs 2021;32:508-16. [PMID: 33735119 DOI: 10.1097/CAD.0000000000001069] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Wang Z, Fu Y, Xia A, Chen C, Qu J, Xu G, Zou X, Wang Q, Wang S. Prognostic and predictive role of a metabolic rate-limiting enzyme signature in hepatocellular carcinoma. Cell Prolif 2021;54:e13117. [PMID: 34423480 DOI: 10.1111/cpr.13117] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Häfner SJ. This is not a pipe - But how harmful is electronic cigarette smoke. Biomed J 2021;44:227-34. [PMID: 34091092 DOI: 10.1016/j.bj.2021.05.006] [Reference Citation Analysis]
24 Ramírez-Nava EJ, Hernández-Ochoa B, Navarrete-Vázquez G, Arreguín-Espinosa R, Ortega-Cuellar D, González-Valdez A, Martínez-Rosas V, Morales-Luna L, Martínez-Miranda J, Sierra-Palacios E, Rocha-Ramírez LM, De Franceschi L, Marcial-Quino J, Gómez-Manzo S. Novel inhibitors of human glucose-6-phosphate dehydrogenase (HsG6PD) affect the activity and stability of the protein. Biochim Biophys Acta Gen Subj 2021;1865:129828. [PMID: 33347959 DOI: 10.1016/j.bbagen.2020.129828] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Wang Y, Zhou XY, Lu XY, Chen KD, Yao HP. Involvement of the circular RNA/microRNA/glucose-6-phosphate dehydrogenase axis in the pathological mechanism of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2021:S1499-3872(21)00170-3. [PMID: 34548225 DOI: 10.1016/j.hbpd.2021.08.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 Zhao S, Zheng W, Yu C, Xu G, Zhang X, Pan C, Feng Y, Yang K, Zhou J, Ma Y. The Role of Ferroptosis in the Treatment and Drug Resistance of Hepatocellular Carcinoma. Front Cell Dev Biol 2022;10:845232. [DOI: 10.3389/fcell.2022.845232] [Reference Citation Analysis]
27 Garcia AA, Koperniku A, Ferreira JCB, Mochly-Rosen D. Treatment strategies for glucose-6-phosphate dehydrogenase deficiency: past and future perspectives. Trends Pharmacol Sci 2021:S0165-6147(21)00137-1. [PMID: 34389161 DOI: 10.1016/j.tips.2021.07.002] [Reference Citation Analysis]
28 Cao F, Luo A, Yang C. G6PD inhibits ferroptosis in hepatocellular carcinoma by targeting cytochrome P450 oxidoreductase. Cell Signal 2021;87:110098. [PMID: 34325001 DOI: 10.1016/j.cellsig.2021.110098] [Reference Citation Analysis]
29 Volani C, Pagliaro A, Rainer J, Paglia G, Porro B, Stadiotti I, Foco L, Cogliati E, Paolin A, Lagrasta C, Frati C, Corradini E, Falco A, Matzinger T, Picard A, Ermon B, Piazza S, De Bortoli M, Tondo C, Philippe R, Medici A, Lavdas AA, Blumer MJF, Pompilio G, Sommariva E, Pramstaller PP, Troppmair J, Meraviglia V, Rossini A. GCN5 contributes to intracellular lipid accumulation in human primary cardiac stromal cells from patients affected by Arrhythmogenic cardiomyopathy. J Cell Mol Med 2022. [PMID: 35712781 DOI: 10.1111/jcmm.17396] [Reference Citation Analysis]
30 Selinski J, Scheibe R. Central Metabolism in Mammals and Plants as a Hub for Controlling Cell Fate. Antioxid Redox Signal 2021;34:1025-47. [PMID: 32620064 DOI: 10.1089/ars.2020.8121] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Xu D, Wang Y, Wu J, Lin S, Chen Y, Zheng J. Identification and clinical validation of EMT-associated prognostic features based on hepatocellular carcinoma. Cancer Cell Int 2021;21:621. [PMID: 34819088 DOI: 10.1186/s12935-021-02326-8] [Reference Citation Analysis]
32 Du G, Xiao M, Chen B, Wang A, Zhu Q, Cai W. Metabolic profiling reveals alterations in the erythrocyte response to fava bean ingestion in G6PD-deficient mice. J Sci Food Agric 2021;101:1562-71. [PMID: 32869306 DOI: 10.1002/jsfa.10775] [Reference Citation Analysis]
33 Liu S, Zhang Y, Qiu L, Zhang S, Meng Y, Huang C, Chen Z, Zhang B, Han J. Uncovering N4-Acetylcytidine-Related mRNA Modification Pattern and Landscape of Stemness and Immunity in Hepatocellular Carcinoma. Front Cell Dev Biol 2022;10:861000. [DOI: 10.3389/fcell.2022.861000] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Nozaki Y, Motomura H, Tamori S, Kimura Y, Onaga C, Kanai S, Ishihara Y, Ozaki A, Hara Y, Harada Y, Mano Y, Sato T, Sato K, Sasaki K, Ishiguro H, Ohno S, Akimoto K. High PKCλ expression is required for ALDH1-positive cancer stem cell function and indicates a poor clinical outcome in late-stage breast cancer patients. PLoS One 2020;15:e0235747. [PMID: 32658903 DOI: 10.1371/journal.pone.0235747] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Vu HH, Jin C, Chang JH. Structural basis for substrate recognition of glucose-6-phosphate dehydrogenase from Kluyveromyces lactis. Biochem Biophys Res Commun 2021;553:85-91. [PMID: 33765558 DOI: 10.1016/j.bbrc.2021.02.088] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Wu Z, Lee YF, Yeo XH, Loo SY, Tam WL. Shifting the Gears of Metabolic Plasticity to Drive Cell State Transitions in Cancer. Cancers (Basel) 2021;13:1316. [PMID: 33804114 DOI: 10.3390/cancers13061316] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Kesavan R, Rion H, Hoxhaj G. New Insights into Oncogenic Transformation: Elevating Antioxidant and Nucleotide Levels Does the Trick. Trends Cancer 2021;7:177-9. [PMID: 33500224 DOI: 10.1016/j.trecan.2021.01.003] [Reference Citation Analysis]
38 Resurreccion EP, Fong K. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022;12:488. [DOI: 10.3390/metabo12060488] [Reference Citation Analysis]
39 Tang YC, Hsiao JR, Jiang SS, Chang JY, Chu PY, Liu KJ, Fang HL, Lin LM, Chen HH, Huang YW, Chen YT, Tsai FY, Lin SF, Chuang YJ, Kuo CC. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics 2021;11:5232-47. [PMID: 33859744 DOI: 10.7150/thno.53417] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 11.0] [Reference Citation Analysis]
40 Meskers CJW, Franczak M, Smolenski RT, Giovannetti E, Peters GJ. Are we still on the right path(way)?: the altered expression of the pentose phosphate pathway in solid tumors and the potential of its inhibition in combination therapy. Expert Opin Drug Metab Toxicol 2022;18:61-83. [PMID: 35238253 DOI: 10.1080/17425255.2022.2049234] [Reference Citation Analysis]
41 Mossenta M, Busato D, Dal Bo M, Toffoli G. Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies. Cancers (Basel) 2020;12:E1668. [PMID: 32585931 DOI: 10.3390/cancers12061668] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
42 Zara R, Rasul A, Sultana T, Jabeen F, Selamoglu Z. Identification of Macrolepiota procera extract as a novel G6PD inhibitor for the treatment of lung cancer. Saudi Journal of Biological Sciences 2022. [DOI: 10.1016/j.sjbs.2022.02.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 De Angelis M, Amatore D, Checconi P, Zevini A, Fraternale A, Magnani M, Hiscott J, De Chiara G, Palamara AT, Nencioni L. Influenza Virus Down-Modulates G6PD Expression and Activity to Induce Oxidative Stress and Promote Its Replication. Front Cell Infect Microbiol 2021;11:804976. [PMID: 35071051 DOI: 10.3389/fcimb.2021.804976] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
44 Yuan C, Yuan M, Chen M, Ouyang J, Tan W, Dai F, Yang D, Liu S, Zheng Y, Zhou C, Cheng Y. Prognostic Implication of a Novel Metabolism-Related Gene Signature in Hepatocellular Carcinoma. Front Oncol 2021;11:666199. [PMID: 34150630 DOI: 10.3389/fonc.2021.666199] [Reference Citation Analysis]
45 Walker BN, Biase FH. The blueprint of RNA storages relative to oocyte developmental competence in cattle (Bos taurus). Biology of Reproduction 2020;102:784-94. [DOI: 10.1093/biolre/ioaa015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 O'Brien CM, Zhang Q, Daoutidis P, Hu WS. A hybrid mechanistic-empirical model for in silico mammalian cell bioprocess simulation. Metab Eng 2021;66:31-40. [PMID: 33813033 DOI: 10.1016/j.ymben.2021.03.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Kögel D, Linder B, Brunschweiger A, Chines S, Behl C. At the Crossroads of Apoptosis and Autophagy: Multiple Roles of the Co-Chaperone BAG3 in Stress and Therapy Resistance of Cancer. Cells 2020;9:E574. [PMID: 32121220 DOI: 10.3390/cells9030574] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
48 Fan K, Liu Z, Gao M, Tu K, Xu Q, Zhang Y. Targeting Nutrient Dependency in Cancer Treatment. Front Oncol 2022;12:820173. [PMID: 35178349 DOI: 10.3389/fonc.2022.820173] [Reference Citation Analysis]
49 Kitagawa A, Kizub I, Jacob C, Michael K, D'Alessandro A, Reisz JA, Grzybowski M, Geurts AM, Rocic P, Gupte R, Miano JM, Gupte SA. CRISPR-Mediated Single Nucleotide Polymorphism Modeling in Rats Reveals Insight Into Reduced Cardiovascular Risk Associated With Mediterranean G6PD Variant. Hypertension 2020;76:523-32. [PMID: 32507041 DOI: 10.1161/HYPERTENSIONAHA.120.14772] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
50 Doustimotlagh AH, Eftekhari M. Glucose-6-phosphate dehydrogenase inhibitor for treatment of severe COVID-19: Polydatin. Clin Nutr ESPEN 2021;43:197-9. [PMID: 34024514 DOI: 10.1016/j.clnesp.2021.02.021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Luongo D, Treppiccione L, Maurano F, Rossi M, Bergamo P. The murine enterocyte cell line Mode-K is a novel and reliable in vitro model for studies on gluten toxicity. Food and Chemical Toxicology 2020;140:111331. [DOI: 10.1016/j.fct.2020.111331] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
52 Baptista I, Karakitsou E, Cazier JB, Günther UL, Marin S, Cascante M. TKTL1 Knockdown Impairs Hypoxia-Induced Glucose-6-phosphate Dehydrogenase and Glyceraldehyde-3-phosphate Dehydrogenase Overexpression. Int J Mol Sci 2022;23:3574. [PMID: 35408935 DOI: 10.3390/ijms23073574] [Reference Citation Analysis]
53 Zhang Q, Yang Z, Ni Y, Bai H, Han Q, Yi Z, Yi X, Agbana YL, Kuang Y, Zhu Y. NF-κB and pSTAT3 synergistically drive G6PD overexpression and facilitate sensitivity to G6PD inhibition in ccRCC. Cancer Cell Int 2020;20:483. [PMID: 33041664 DOI: 10.1186/s12935-020-01576-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
54 Le X, Mu J, Peng W, Tang J, Xiang Q, Tian S, Feng Y, He S, Qiu Z, Ren G, Huang A, Lin Y, Tao Q, Xiang T. DNA methylation downregulated ZDHHC1 suppresses tumor growth by altering cellular metabolism and inducing oxidative/ER stress-mediated apoptosis and pyroptosis. Theranostics 2020;10:9495-511. [PMID: 32863941 DOI: 10.7150/thno.45631] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
55 Mascaró M, Alonso EN, Alonso EG, Lacunza E, Curino AC, Facchinetti MM. Nuclear Localization of Heme Oxygenase-1 in Pathophysiological Conditions: Does It Explain the Dual Role in Cancer? Antioxidants (Basel) 2021;10:87. [PMID: 33440611 DOI: 10.3390/antiox10010087] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
56 Yang HC, Yu H, Ma TH, Tjong WY, Stern A, Chiu DT. tert-Butyl Hydroperoxide (tBHP)-Induced Lipid Peroxidation and Embryonic Defects Resemble Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency in C. elegans. Int J Mol Sci 2020;21:E8688. [PMID: 33217954 DOI: 10.3390/ijms21228688] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
57 Brito C, Tomás A, Silva S, Bronze MR, Serra AT, Pojo M. The Impact of Olive Oil Compounds on the Metabolic Reprogramming of Cutaneous Melanoma Cell Models. Molecules 2021;26:E289. [PMID: 33430068 DOI: 10.3390/molecules26020289] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Behzadifar S, Hosseini M, Mohammadnejad J, Asiabanha M. A new colorimetric assay for sensitive detection of glucose-6-phosphate dehydrogenase deficiency based on silver nanoparticles. Nanotechnology 2021;33. [PMID: 34649232 DOI: 10.1088/1361-6528/ac2fe5] [Reference Citation Analysis]
59 Ghanbari F, Fortier AM, Park M, Philip A. Cholesterol-Induced Metabolic Reprogramming in Breast Cancer Cells Is Mediated via the ERRα Pathway. Cancers (Basel) 2021;13:2605. [PMID: 34073320 DOI: 10.3390/cancers13112605] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
60 Stanton RC. Role of Glucose Metabolism and Mitochondrial Function in Diabetic Kidney Disease. Curr Diab Rep 2021;21:6. [PMID: 33449215 DOI: 10.1007/s11892-020-01372-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Ryan K, Tekwani BL. Current investigations on clinical pharmacology and therapeutics of Glucose-6-phosphate dehydrogenase deficiency. Pharmacol Ther 2021;222:107788. [PMID: 33326820 DOI: 10.1016/j.pharmthera.2020.107788] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
62 Jacquier V, Gitenay D, Cavaillès V, Teyssier C. The Transcription Coregulator RIP140 Inhibits Cancer Cell Proliferation by Targeting the Pentose Phosphate Pathway. IJMS 2022;23:7419. [DOI: 10.3390/ijms23137419] [Reference Citation Analysis]
63 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot 2021;72:830-47. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
64 Nakamura M, Morita A. Immune activity in Merkel cell carcinoma. J Dermatol 2021. [PMID: 34766373 DOI: 10.1111/1346-8138.16232] [Reference Citation Analysis]
65 Deng P, Li K, Gu F, Zhang T, Zhao W, Sun M, Hou B. LINC00242/miR-1-3p/G6PD axis regulates Warburg effect and affects gastric cancer proliferation and apoptosis. Mol Med 2021;27:9. [PMID: 33514309 DOI: 10.1186/s10020-020-00259-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
66 Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. Elife 2021;10:e59629. [PMID: 33427197 DOI: 10.7554/eLife.59629] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
67 Alu SN, Los EA, Ford GA, Stone WL. Oxidative Stress in Type 2 Diabetes: The Case for Future Pediatric Redoxomics Studies. Antioxidants 2022;11:1336. [DOI: 10.3390/antiox11071336] [Reference Citation Analysis]