BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Carrasco M, Salazar C, Tiznado W, Ruiz LM. Alterations of Mitochondrial Biology in the Oral Mucosa of Chilean Children with Autism Spectrum Disorder (ASD). Cells 2019;8:E367. [PMID: 31018497 DOI: 10.3390/cells8040367] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 2022;13:1006612. [DOI: 10.3389/fpsyt.2022.1006612] [Reference Citation Analysis]
2 Trinchese G, Cimmino F, Cavaliere G, Catapano A, Fogliano C, Lama A, Pirozzi C, Cristiano C, Russo R, Petrella L, Meli R, Mattace Raso G, Crispino M, Avallone B, Mollica MP. The Hepatic Mitochondrial Alterations Exacerbate Meta-Inflammation in Autism Spectrum Disorders. Antioxidants 2022;11:1990. [DOI: 10.3390/antiox11101990] [Reference Citation Analysis]
3 Bam S, Buchanan E, Mahony C, O'Ryan C. DNA Methylation of PGC-1α Is Associated With Elevated mtDNA Copy Number and Altered Urinary Metabolites in Autism Spectrum Disorder. Front Cell Dev Biol 2021;9:696428. [PMID: 34381777 DOI: 10.3389/fcell.2021.696428] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
4 Bam S, Buchanan E, Mahony C, O’ryan C. DNA methylation of PGC-1α is associated with elevated mtDNA copy number and altered urinary metabolites in Autism Spectrum Disorder.. [DOI: 10.1101/2021.01.20.427429] [Reference Citation Analysis]
5 Citrigno L, Muglia M, Qualtieri A, Spadafora P, Cavalcanti F, Pioggia G, Cerasa A. The Mitochondrial Dysfunction Hypothesis in Autism Spectrum Disorders: Current Status and Future Perspectives. Int J Mol Sci 2020;21:E5785. [PMID: 32806635 DOI: 10.3390/ijms21165785] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
6 Balachandar V, Rajagopalan K, Jayaramayya K, Jeevanandam M, Iyer M. Mitochondrial dysfunction: A hidden trigger of autism? Genes Dis 2021;8:629-39. [PMID: 34291134 DOI: 10.1016/j.gendis.2020.07.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
7 Di Liberto D, D'Anneo A, Carlisi D, Emanuele S, De Blasio A, Calvaruso G, Giuliano M, Lauricella M. Brain Opioid Activity and Oxidative Injury: Different Molecular Scenarios Connecting Celiac Disease and Autistic Spectrum Disorder. Brain Sci 2020;10:E437. [PMID: 32659996 DOI: 10.3390/brainsci10070437] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
8 Singh K, Singh IN, Diggins E, Connors SL, Karim MA, Lee D, Zimmerman AW, Frye RE. Developmental regression and mitochondrial function in children with autism. Ann Clin Transl Neurol 2020;7:683-94. [PMID: 32343046 DOI: 10.1002/acn3.51034] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
9 Pecorelli A, Ferrara F, Messano N, Cordone V, Schiavone ML, Cervellati F, Woodby B, Cervellati C, Hayek J, Valacchi G. Alterations of mitochondrial bioenergetics, dynamics, and morphology support the theory of oxidative damage involvement in autism spectrum disorder. FASEB J 2020;34:6521-38. [PMID: 32246805 DOI: 10.1096/fj.201902677R] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
10 Oj C. Neuroscience Theories, Hypothesis and Approaches to ASD Physiopathology. A Review. JNRT 2019;3:1-12. [DOI: 10.14302/issn.2470-5020.jnrt-19-2974] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]