BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vallée A, Vallée JN, Lecarpentier Y. Parkinson's Disease: Potential Actions of Lithium by Targeting the WNT/β-Catenin Pathway, Oxidative Stress, Inflammation and Glutamatergic Pathway. Cells 2021;10:230. [PMID: 33503974 DOI: 10.3390/cells10020230] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Keikhosravani P, Maleki-Ghaleh H, Kahaie Khosrowshahi A, Bodaghi M, Dargahi Z, Kavanlouei M, Khademi-Azandehi P, Fallah A, Beygi-Khosrowshahi Y, Siadati MH. Bioactivity and Antibacterial Behaviors of Nanostructured Lithium-Doped Hydroxyapatite for Bone Scaffold Application. Int J Mol Sci 2021;22:9214. [PMID: 34502124 DOI: 10.3390/ijms22179214] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Gomart A, Vallée A, Lecarpentier Y. Necrotizing Enterocolitis: LPS/TLR4-Induced Crosstalk Between Canonical TGF-β/Wnt/β-Catenin Pathways and PPARγ. Front Pediatr 2021;9:713344. [PMID: 34712628 DOI: 10.3389/fped.2021.713344] [Reference Citation Analysis]
3 Vallée A, Lecarpentier Y, Vallée JN. Cannabidiol and the Canonical WNT/β-Catenin Pathway in Glaucoma. Int J Mol Sci 2021;22:3798. [PMID: 33917605 DOI: 10.3390/ijms22073798] [Reference Citation Analysis]
4 Vallée A, Lecarpentier Y, Vallée JN. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front Immunol 2021;12:666693. [PMID: 33927728 DOI: 10.3389/fimmu.2021.666693] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Vallée A, Lecarpentier Y, Vallée JN. Opposed Interplay between IDH1 Mutations and the WNT/β-Catenin Pathway: Added Information for Glioma Classification. Biomedicines 2021;9:619. [PMID: 34070746 DOI: 10.3390/biomedicines9060619] [Reference Citation Analysis]
6 Vallée A. Arterial Stiffness and the Canonical WNT/β-catenin Pathway. Curr Hypertens Rep 2022. [PMID: 35727523 DOI: 10.1007/s11906-022-01211-7] [Reference Citation Analysis]
7 Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021;15:665820. [PMID: 34616271 DOI: 10.3389/fnins.2021.665820] [Reference Citation Analysis]
8 Vallée A, Vallée JN, Lecarpentier Y. Lithium and Atypical Antipsychotics: The Possible WNT/β Pathway Target in Glaucoma. Biomedicines 2021;9:473. [PMID: 33925885 DOI: 10.3390/biomedicines9050473] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Arciniegas Ruiz SM, Eldar-finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022;14:792364. [DOI: 10.3389/fnmol.2021.792364] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
10 Del Grosso A, Parlanti G, Angella L, Giordano N, Tonazzini I, Ottalagana E, Carpi S, Pellegrino RM, Alabed HBR, Emiliani C, Caleo M, Cecchini M. Chronic lithium administration in a mouse model for Krabbe disease. JIMD Rep 2022;63:50-65. [PMID: 35028271 DOI: 10.1002/jmd2.12258] [Reference Citation Analysis]