BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rabuffetti M, Bavaro T, Semproli R, Cattaneo G, Massone M, Morelli CF, Speranza G, Ubiali D. Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation. Catalysts 2019;9:355. [DOI: 10.3390/catal9040355] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Üstün E, Özdemir N, Şahin N. Activity analysis of new N -heterocyclic carbenes and silver N -heterocyclic carbene molecules against novel coronavirus by UV-vis, fluorescence spectroscopy and molecular docking. Journal of Coordination Chemistry. [DOI: 10.1080/00958972.2022.2026935] [Reference Citation Analysis]
2 Kaspar F, Giessmann RT, Neubauer P, Wagner A, Gimpel M. Thermodynamic Reaction Control of Nucleoside Phosphorolysis. Adv Synth Catal 2019;362:867-76. [DOI: 10.1002/adsc.201901230] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
3 Ponciano CS, Ávila EP, Grazul RM, de Oliveira Mendes LA, de Almeida MV. Natural products and their derivatives as anti-flavivirus drug candidates. Med Chem Res 2021;30:1056-73. [DOI: 10.1007/s00044-021-02718-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Slagman S, Fessner W. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021;50:1968-2009. [DOI: 10.1039/d0cs00763c] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Benítez-Mateos AI, Paradisi F. Sustainable Flow-Synthesis of (Bulky) Nucleoside Drugs by a Novel and Highly Stable Nucleoside Phosphorylase Immobilized on Reusable Supports. ChemSusChem 2021. [PMID: 34726353 DOI: 10.1002/cssc.202102030] [Reference Citation Analysis]
6 Alcántara AR. Biocatalysis and Pharmaceuticals: A Smart Tool for Sustainable Development. Catalysts 2019;9:792. [DOI: 10.3390/catal9100792] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Alexeev CS, Drenichev MS, Dorinova EO, Esipov RS, Kulikova IV, Mikhailov SN. Use of nucleoside phosphorylases for the preparation of 5-modified pyrimidine ribonucleosides. Biochim Biophys Acta Proteins Proteom 2020;1868:140292. [PMID: 31676450 DOI: 10.1016/j.bbapap.2019.140292] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
8 Cosgrove SC, Miller GJ. Advances in biocatalytic and chemoenzymatic synthesis of nucleoside analogues. Expert Opin Drug Discov 2022. [PMID: 35133222 DOI: 10.1080/17460441.2022.2039620] [Reference Citation Analysis]
9 Eltoukhy L, Loderer C. A Multi-enzyme Cascade for the Biosynthesis of AICA Ribonucleoside Di- and Triphosphate. Chembiochem 2021. [PMID: 34859954 DOI: 10.1002/cbic.202100596] [Reference Citation Analysis]
10 Del Arco J, Acosta J, Fernández-Lucas J. New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2'-deoxyribosyltransferases. Biotechnol Adv 2021;:107701. [PMID: 33515673 DOI: 10.1016/j.biotechadv.2021.107701] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Varizhuk IV, Oslovsky VE, Solyev PN, Drenichev MS, Mikhailov SN. Synthesis of α-D-Ribose 1-Phosphate and 2-Deoxy-α-D-Ribose 1-Phosphate Via Enzymatic Phosphorolysis of 7-Methylguanosine and 7-Methyldeoxyguanosine. Curr Protoc 2022;2:e347. [PMID: 35050551 DOI: 10.1002/cpz1.347] [Reference Citation Analysis]
12 Yu XQ, Yang JW, Ding XJ, Liu LH, Hu XQ, Zhang HB. Analysis of the Effect of N555 Mutations on the Product Specificity of Dextransucrase Using Caffeic Acid Phenethyl Ester as an Acceptor Substrate. J Agric Food Chem 2021;69:5774-82. [PMID: 33978404 DOI: 10.1021/acs.jafc.1c00822] [Reference Citation Analysis]