BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gaianigo N, Melisi D, Carbone C. EMT and Treatment Resistance in Pancreatic Cancer. Cancers (Basel). 2017;9:pii: E122. [PMID: 28895920 DOI: 10.3390/cancers9090122] [Cited by in Crossref: 57] [Cited by in F6Publishing: 66] [Article Influence: 14.3] [Reference Citation Analysis]
Number Citing Articles
1 Matsuo H, Nakanishi J, Noguchi Y, Kitagawa K, Shigemura K, Sunazuka T, Takahashi Y, Ōmura S, Nakashima T. Nanaomycin K, a new epithelial-mesenchymal transition inhibitor produced by the actinomycete "Streptomyces rosa subsp. notoensis" OS-3966. J Biosci Bioeng 2020;129:291-5. [PMID: 31582334 DOI: 10.1016/j.jbiosc.2019.09.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
2 Liu B, Wu S, Ma J, Yan S, Xiao Z, Wan L, Zhang F, Shang M, Mao A. lncRNA GAS5 Reverses EMT and Tumor Stem Cell-Mediated Gemcitabine Resistance and Metastasis by Targeting miR-221/SOCS3 in Pancreatic Cancer. Mol Ther Nucleic Acids 2018;13:472-82. [PMID: 30388621 DOI: 10.1016/j.omtn.2018.09.026] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 20.7] [Reference Citation Analysis]
3 Jia L, Tian Y, Chen Y, Zhang G. The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-Catenin pathway. Onco Targets Ther 2018;11:313-21. [PMID: 29391808 DOI: 10.2147/OTT.S154339] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 15.3] [Reference Citation Analysis]
4 Momeny M, Alishahi Z, Eyvani H, Esmaeili F, Zaghal A, Ghaffari P, Tavakkoly-bazzaz J, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Anti-tumor activity of cediranib, a pan-vascular endothelial growth factor receptor inhibitor, in pancreatic ductal adenocarcinoma cells. Cell Oncol 2020;43:81-93. [DOI: 10.1007/s13402-019-00473-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
5 Cavaliere A, Merz V, Casalino S, Zecchetto C, Simionato F, Salt HL, Contarelli S, Santoro R, Melisi D. Novel Biomarkers for Prediction of Response to Preoperative Systemic Therapies in Gastric Cancer. J Gastric Cancer 2019;19:375-92. [PMID: 31897341 DOI: 10.5230/jgc.2019.19.e39] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
6 Shao Q, Zhang Z, Cao R, Zang H, Pei W, Sun T. CPA4 Promotes EMT in Pancreatic Cancer via Stimulating PI3K-AKT-mTOR Signaling. Onco Targets Ther 2020;13:8567-80. [PMID: 32922037 DOI: 10.2147/OTT.S257057] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Liu J, Zhang Y, Yu C, Zhang P, Gu S, Wang G, Xiao H, Li S. Bergenin inhibits bladder cancer progression via activating the PPARγ/PTEN/Akt signal pathway. Drug Dev Res 2021;82:278-86. [PMID: 33112006 DOI: 10.1002/ddr.21751] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Mu G, Ding Q, Li H, Zhang L, Zhang L, He K, Wu L, Deng Y, Yang D, Wu L, Xu M, Zhou J, Yu H. Gastrin stimulates pancreatic cancer cell directional migration by activating the Gα12/13-RhoA-ROCK signaling pathway. Exp Mol Med 2018;50:1-14. [PMID: 29717112 DOI: 10.1038/s12276-018-0081-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
9 Liu F, Xia Z, Zhang M, Ding J, Feng Y, Wu J, Dong Y, Gao W, Han Z, Liu Y, Yao Y, Li D. SMARCAD1 Promotes Pancreatic Cancer Cell Growth and Metastasis through Wnt/β-catenin-Mediated EMT. Int J Biol Sci 2019;15:636-46. [PMID: 30745850 DOI: 10.7150/ijbs.29562] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
10 Cruz VH, Arner EN, Du W, Bremauntz AE, Brekken RA. Axl-mediated activation of TBK1 drives epithelial plasticity in pancreatic cancer. JCI Insight 2019;5:126117. [PMID: 30938713 DOI: 10.1172/jci.insight.126117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
11 Yahagi H, Yahagi T, Furukawa M, Matsuzaki K. Antiproliferative and Antimigration Activities of Beauvericin Isolated from Isaria sp. on Pancreatic Cancer Cells. Molecules 2020;25:E4586. [PMID: 33050002 DOI: 10.3390/molecules25194586] [Reference Citation Analysis]
12 Monkman JH, Thompson EW, Nagaraj SH. Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers (Basel) 2019;11:E1745. [PMID: 31703358 DOI: 10.3390/cancers11111745] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Ma J, Cao T, Cui Y, Zhang F, Shi Y, Xia J, Wang ZP. miR-223 Regulates Cell Proliferation and Invasion via Targeting PDS5B in Pancreatic Cancer Cells. Mol Ther Nucleic Acids 2019;14:583-92. [PMID: 30776580 DOI: 10.1016/j.omtn.2019.01.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
14 Lin Z, Hu Y, Lin R, Ye H. The effect of overexpression of the HOXD10 gene on the malignant proliferation, invasion, and tumor formation of pancreatic cancer cell PANC-1. Gland Surg 2020;9:385-91. [PMID: 32420263 DOI: 10.21037/gs.2020.03.28] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Arner EN, Du W, Brekken RA. Behind the Wheel of Epithelial Plasticity in KRAS-Driven Cancers. Front Oncol 2019;9:1049. [PMID: 31681587 DOI: 10.3389/fonc.2019.01049] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
16 Fedele V, Melisi D. Permissive State of EMT: The Role of Immune Cell Compartment. Front Oncol 2020;10:587. [PMID: 32391271 DOI: 10.3389/fonc.2020.00587] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
17 Sandhu V, Labori KJ, Borgida A, Lungu I, Bartlett J, Hafezi-bakhtiari S, Denroche RE, Jang GH, Pasternack D, Mbaabali F, Watson M, Wilson J, Kure EH, Gallinger S, Haibe-kains B. Meta-Analysis of 1,200 Transcriptomic Profiles Identifies a Prognostic Model for Pancreatic Ductal Adenocarcinoma. JCO Clinical Cancer Informatics 2019. [DOI: 10.1200/cci.18.00102] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Nattress CB, Halldén G. Advances in oncolytic adenovirus therapy for pancreatic cancer. Cancer Lett 2018;434:56-69. [PMID: 29981812 DOI: 10.1016/j.canlet.2018.07.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
19 Xu Y, Liu Y, Li Z, Li H, Li X, Yan L, Mao J, Shen J, Chen W, Xue F. Long non‑coding RNA H19 is involved in sorafenib resistance in hepatocellular carcinoma by upregulating miR‑675. Oncol Rep 2020;44:165-73. [PMID: 32627034 DOI: 10.3892/or.2020.7608] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
20 Tang C, Chen E, Peng K, Wang H, Cheng X, Wang Y, Yu S, Yu Y, Cui Y, Liu T. Mining the role of angiopoietin-like protein family in gastric cancer and seeking potential therapeutic targets by integrative bioinformatics analysis. Cancer Med 2020;9:4850-63. [PMID: 32410376 DOI: 10.1002/cam4.3100] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Pappalardo A, Giunta EF, Tirino G, Pompella L, Federico P, Daniele B, De Vita F, Petrillo A. Adjuvant Treatment in Pancreatic Cancer: Shaping the Future of the Curative Setting. Front Oncol 2021;11:695627. [PMID: 34485130 DOI: 10.3389/fonc.2021.695627] [Reference Citation Analysis]
22 Qin RF, Zhang J, Huo HR, Yuan ZJ, Xue JD. MiR-205 mediated APC regulation contributes to pancreatic cancer cell proliferation. World J Gastroenterol 2019; 25(28): 3775-3786 [PMID: 31391772 DOI: 10.3748/wjg.v25.i28.3775] [Cited by in CrossRef: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
23 Roche J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers (Basel) 2018;10:E52. [PMID: 29462906 DOI: 10.3390/cancers10020052] [Cited by in Crossref: 113] [Cited by in F6Publishing: 86] [Article Influence: 37.7] [Reference Citation Analysis]
24 Imai D, Yoshizumi T, Okano S, Itoh S, Ikegami T, Harada N, Aishima S, Oda Y, Maehara Y. IFN-γ Promotes Epithelial-Mesenchymal Transition and the Expression of PD-L1 in Pancreatic Cancer. J Surg Res 2019;240:115-23. [PMID: 30927618 DOI: 10.1016/j.jss.2019.02.038] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
25 Cheng CS, Chen JX, Tang J, Geng YW, Zheng L, Lv LL, Chen LY, Chen Z. Paeonol Inhibits Pancreatic Cancer Cell Migration and Invasion Through the Inhibition of TGF-β1/Smad Signaling and Epithelial-Mesenchymal-Transition. Cancer Manag Res 2020;12:641-51. [PMID: 32099461 DOI: 10.2147/CMAR.S224416] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
26 Belvedere R, Saggese P, Pessolano E, Memoli D, Bizzarro V, Rizzo F, Parente L, Weisz A, Petrella A. miR-196a Is Able to Restore the Aggressive Phenotype of Annexin A1 Knock-Out in Pancreatic Cancer Cells by CRISPR/Cas9 Genome Editing. Int J Mol Sci 2018;19:E1967. [PMID: 29986379 DOI: 10.3390/ijms19071967] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
27 Carstens JL, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews KM, Rao A, Burks JK, Rhim AD, Kalluri R. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep 2021;35:108990. [PMID: 33852841 DOI: 10.1016/j.celrep.2021.108990] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Wang M, Yang Y, Yang J, Yang J, Han S. circ_KIAA1429 accelerates hepatocellular carcinoma advancement through the mechanism of m6A-YTHDF3-Zeb1. Life Sci 2020;257:118082. [PMID: 32653519 DOI: 10.1016/j.lfs.2020.118082] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 13.0] [Reference Citation Analysis]
29 Ma J, Cui Y, Cao T, Xu H, Shi Y, Xia J, Tao Y, Wang ZP. PDS5B regulates cell proliferation and motility via upregulation of Ptch2 in pancreatic cancer cells. Cancer Lett 2019;460:65-74. [PMID: 31233836 DOI: 10.1016/j.canlet.2019.06.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
30 Zhao J, Wang Y, Wu X. HMGN5 promotes proliferation and invasion via the activation of Wnt/β-catenin signaling pathway in pancreatic ductal adenocarcinoma. Oncol Lett 2018;16:4013-9. [PMID: 30128022 DOI: 10.3892/ol.2018.9090] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
31 Tekin C, Aberson HL, Bijlsma MF, Spek CA. Early macrophage infiltrates impair pancreatic cancer cell growth by TNF-α secretion. BMC Cancer 2020;20:1183. [PMID: 33267818 DOI: 10.1186/s12885-020-07697-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Wu Z, Kong X, Wang Z. Integrin α7 knockdown suppresses cell proliferation, migration, invasion and EMT in hepatocellular carcinoma. Exp Ther Med 2021;21:309. [PMID: 33717252 DOI: 10.3892/etm.2021.9740] [Reference Citation Analysis]
33 Gonciar D, Mocan T, Matea CT, Zdrehus C, Mosteanu O, Mocan L, Pop T. Nanotechnology in metastatic cancer treatment: Current Achievements and Future Research Trends. J Cancer 2019;10:1358-69. [PMID: 31031845 DOI: 10.7150/jca.28394] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
34 Ben-eliyahu S. Tumor Excision as a Metastatic Russian Roulette: Perioperative Interventions to Improve Long-Term Survival of Cancer Patients. Trends in Cancer 2020;6:951-9. [DOI: 10.1016/j.trecan.2020.06.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
35 Fan H, Huang L, Zhuang X, Ai F, Sun W. Angiopoietin-like protein 1 inhibits epithelial to mesenchymal transition in colorectal cancer cells via suppress Slug expression. Cytotechnology 2019;71:35-44. [PMID: 30610511 DOI: 10.1007/s10616-018-0259-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
36 Zhang W, Zhang J, Zhang Z, Guo Y, Wu Y, Wang R, Wang L, Mao S, Yao X. Overexpression of Indoleamine 2,3-Dioxygenase 1 Promotes Epithelial-Mesenchymal Transition by Activation of the IL-6/STAT3/PD-L1 Pathway in Bladder Cancer. Transl Oncol 2019;12:485-92. [PMID: 30594037 DOI: 10.1016/j.tranon.2018.11.012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
37 Wu H, Guo JC, Yang SH, Tien YW, Kuo SH. Postoperative Imaging and Tumor Marker Surveillance in Resected Pancreatic Cancer. J Clin Med 2019;8:E1115. [PMID: 31357636 DOI: 10.3390/jcm8081115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
38 Qiao Y, Yan LJ, Yan C. Sauchinone inhibits hypoxia-induced epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma cells through the Wnt/β-catenin pathway. Anticancer Drugs 2020;31:918-24. [PMID: 32889895 DOI: 10.1097/CAD.0000000000000956] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Son SW, Song MG, Yun BD, Park JK. Noncoding RNAs Associated with Therapeutic Resistance in Pancreatic Cancer. Biomedicines 2021;9:263. [PMID: 33799952 DOI: 10.3390/biomedicines9030263] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Liu X, Guo X, Li H, Chen J. KAI1 reverses the epithelial-mesenchymal transition in human pancreatic cancer cells. Hepatobiliary & Pancreatic Diseases International 2019;18:471-7. [DOI: 10.1016/j.hbpd.2019.03.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Jiang J, Bai J, Qin T, Wang Z, Han L. NGF from pancreatic stellate cells induces pancreatic cancer proliferation and invasion by PI3K/AKT/GSK signal pathway. J Cell Mol Med 2020;24:5901-10. [PMID: 32294802 DOI: 10.1111/jcmm.15265] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
42 Bamodu OA, Chang HL, Ong JR, Lee WH, Yeh CT, Tsai JT. Elevated PDK1 Expression Drives PI3K/AKT/MTOR Signaling Promotes Radiation-Resistant and Dedifferentiated Phenotype of Hepatocellular Carcinoma. Cells 2020;9:E746. [PMID: 32197467 DOI: 10.3390/cells9030746] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
43 Piro G, Carbone C, Santoro R, Tortora G, Melisi D. Predictive biomarkers for the treatment of resectable esophageal and esophago-gastric junction adenocarcinoma: from hypothesis generation to clinical validation. Expert Rev Mol Diagn 2018;18:357-70. [PMID: 29544370 DOI: 10.1080/14737159.2018.1454312] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
44 Lee YJ, Park KS, Heo SH, Nam HS, Cho MK, Lee SH. Pifithrin-μ induces necroptosis through oxidative mitochondrial damage but accompanies epithelial-mesenchymal transition-like phenomenon in malignant mesothelioma cells under lactic acidosis. Arch Pharm Res 2019;42:890-901. [PMID: 31428976 DOI: 10.1007/s12272-019-01181-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
45 Carbone C, Piro G, Merz V, Simionato F, Santoro R, Zecchetto C, Tortora G, Melisi D. Angiopoietin-Like Proteins in Angiogenesis, Inflammation and Cancer. Int J Mol Sci 2018;19:E431. [PMID: 29389861 DOI: 10.3390/ijms19020431] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 19.0] [Reference Citation Analysis]
46 Aier I, Semwal R, Dhara A, Sen N, Varadwaj PK. An integrated epigenome and transcriptome analysis identifies PAX2 as a master regulator of drug resistance in high grade pancreatic ductal adenocarcinoma. PLoS One 2019;14:e0223554. [PMID: 31622355 DOI: 10.1371/journal.pone.0223554] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
47 Hareendran S, Yang X, Lou H, Xiao L, Loh YP. Carboxypeptidase E-∆N Promotes Proliferation and Invasion of Pancreatic Cancer Cells via Upregulation of CXCR2 Gene Expression. Int J Mol Sci 2019;20:E5725. [PMID: 31731578 DOI: 10.3390/ijms20225725] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Yu J, Shi L, Shen X, Zhao Y. UCP2 regulates cholangiocarcinoma cell plasticity via mitochondria-to-AMPK signals. Biochem Pharmacol 2019;166:174-84. [PMID: 31085159 DOI: 10.1016/j.bcp.2019.05.017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
49 Quiñonero F, Mesas C, Doello K, Cabeza L, Perazzoli G, Jimenez-Luna C, Rama AR, Melguizo C, Prados J. The challenge of drug resistance in pancreatic ductal adenocarcinoma: a current overview. Cancer Biol Med 2019;16:688-99. [PMID: 31908888 DOI: 10.20892/j.issn.2095-3941.2019.0252] [Cited by in F6Publishing: 15] [Reference Citation Analysis]
50 Lu SY, Hua J, Xu J, Wei MY, Liang C, Meng QC, Liu J, Zhang B, Wang W, Yu XJ, Shi S. Microorganisms in chemotherapy for pancreatic cancer: An overview of current research and future directions. Int J Biol Sci 2021;17:2666-82. [PMID: 34326701 DOI: 10.7150/ijbs.59117] [Reference Citation Analysis]
51 Chen Y, Liu P, Shen D, Liu H, Xu L, Wang J, Shen D, Sun H, Wu H. FAM172A inhibits EMT in pancreatic cancer via ERK-MAPK signaling. Biol Open 2020;9:bio048462. [PMID: 31988090 DOI: 10.1242/bio.048462] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Hruban RH, Gaida MM, Thompson E, Hong SM, Noë M, Brosens LA, Jongepier M, Offerhaus GJA, Wood LD. Why is pancreatic cancer so deadly? The pathologist's view. J Pathol 2019;248:131-41. [PMID: 30838636 DOI: 10.1002/path.5260] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 12.5] [Reference Citation Analysis]
53 Ansari D, Friess H, Bauden M, Samnegård J, Andersson R. Pancreatic cancer: disease dynamics, tumor biology and the role of the microenvironment. Oncotarget 2018;9:6644-51. [PMID: 29464100 DOI: 10.18632/oncotarget.24019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
54 Gu Y, Zhang B, Gu G, Yang X, Qian Z. Metformin Increases the Chemosensitivity of Pancreatic Cancer Cells to Gemcitabine by Reversing EMT Through Regulation DNA Methylation of miR-663. Onco Targets Ther. 2020;13:10417-10429. [PMID: 33116621 DOI: 10.2147/ott.s261570] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
55 Huai Y, Zhang Y, Xiong X, Das S, Bhattacharya R, Mukherjee P. Gold Nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress 2019;3:267-79. [PMID: 31440741 DOI: 10.15698/cst2019.08.195] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
56 Xu R, Yang J, Ren B, Wang H, Yang G, Chen Y, You L, Zhao Y. Reprogramming of Amino Acid Metabolism in Pancreatic Cancer: Recent Advances and Therapeutic Strategies. Front Oncol 2020;10:572722. [PMID: 33117704 DOI: 10.3389/fonc.2020.572722] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
57 Cascetta P, Cavaliere A, Piro G, Torroni L, Santoro R, Tortora G, Melisi D, Carbone C. Pancreatic Cancer and Obesity: Molecular Mechanisms of Cell Transformation and Chemoresistance. Int J Mol Sci 2018;19:E3331. [PMID: 30366466 DOI: 10.3390/ijms19113331] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
58 Li H, Jiang W, Liu XN, Yuan LY, Li TJ, Li S, Xu SS, Zhang WH, Gao HL, Han X, Wang WQ, Wu CT, Yu XJ, Xu HX, Liu L. TET1 downregulates epithelial-mesenchymal transition and chemoresistance in PDAC by demethylating CHL1 to inhibit the Hedgehog signaling pathway. Oncogene. 2020;39:5825-5838. [PMID: 32753651 DOI: 10.1038/s41388-020-01407-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
59 Yan B, Jiang Z, Cheng L, Chen K, Zhou C, Sun L, Qian W, Li J, Cao J, Xu Q, Ma Q, Lei J. Paracrine HGF/c-MET enhances the stem cell-like potential and glycolysis of pancreatic cancer cells via activation of YAP/HIF-1α. Exp Cell Res 2018;371:63-71. [PMID: 30056064 DOI: 10.1016/j.yexcr.2018.07.041] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
60 Nakamura K, Sho M, Akahori T, Nishiwada S, Kunishige T, Nakagawa K, Nagai M, Takagi T, Terai T, Ikeda N. Clinical relevance of CD70 expression in resected pancreatic cancer: Prognostic value and therapeutic potential. Pancreatology 2021;21:573-80. [PMID: 33541781 DOI: 10.1016/j.pan.2021.01.013] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Contarelli S, Fedele V, Melisi D. HOX Genes Family and Cancer: A Novel Role for Homeobox B9 in the Resistance to Anti-Angiogenic Therapies. Cancers (Basel) 2020;12:E3299. [PMID: 33171691 DOI: 10.3390/cancers12113299] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
62 Wang M, Estrella JS, Katz MH, Kim M, Rashid A, Lee JE, Maitra A, Wistuba II, Wolff RA, Varadhachary GR, Wang H. Expression of Epithelial-Mesenchymal Transition Markers in Treated Pancreatic Ductal Adenocarcinoma. Pancreas 2019;48:1367-72. [PMID: 31688603 DOI: 10.1097/MPA.0000000000001432] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
63 O'Connell F, O'Sullivan J. Help or hindrance: The obesity paradox in cancer treatment response. Cancer Lett 2021;522:269-80. [PMID: 34534616 DOI: 10.1016/j.canlet.2021.09.021] [Reference Citation Analysis]
64 Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2019;194:161-84. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Cited by in Crossref: 117] [Cited by in F6Publishing: 103] [Article Influence: 39.0] [Reference Citation Analysis]
65 Parameswaran N, Bartel CA, Hernandez-Sanchez W, Miskimen KL, Smigiel JM, Khalil AM, Jackson MW. A FAM83A Positive Feed-back Loop Drives Survival and Tumorigenicity of Pancreatic Ductal Adenocarcinomas. Sci Rep 2019;9:13396. [PMID: 31527715 DOI: 10.1038/s41598-019-49475-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
66 Liu M, Hancock SE, Sultani G, Wilkins BP, Ding E, Osborne B, Quek LE, Turner N. Snail-Overexpression Induces Epithelial-mesenchymal Transition and Metabolic Reprogramming in Human Pancreatic Ductal Adenocarcinoma and Non-tumorigenic Ductal Cells. J Clin Med 2019;8:E822. [PMID: 31181802 DOI: 10.3390/jcm8060822] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
67 Sun X, He X, Zhang Y, Hosaka K, Andersson P, Wu J, Wu J, Jing X, Du Q, Hui X, Ding B, Guo Z, Hong A, Liu X, Wang Y, Ji Q, Beyaert R, Yang Y, Li Q, Cao Y. Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut 2021:gutjnl-2020-322744. [PMID: 33568427 DOI: 10.1136/gutjnl-2020-322744] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]