BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017;9:E19. [PMID: 28218708 DOI: 10.3390/cancers9020019] [Cited by in Crossref: 355] [Cited by in F6Publishing: 295] [Article Influence: 71.0] [Reference Citation Analysis]
Number Citing Articles
1 Balalaeva IV, Mishchenko TA, Turubanova VD, Peskova NN, Shilyagina NY, Plekhanov VI, Lermontova SA, Klapshina LG, Vedunova MV, Krysko DV. Cyanoarylporphyrazines with High Viscosity Sensitivity: A Step towards Dosimetry-Assisted Photodynamic Cancer Treatment. Molecules 2021;26:5816. [PMID: 34641360 DOI: 10.3390/molecules26195816] [Reference Citation Analysis]
2 Yang C, Su M, Luo P, Liu Y, Yang F, Li C. A Photosensitive Polymeric Carrier with a Renewable Singlet Oxygen Reservoir Regulated by Two NIR Beams for Enhanced Antitumor Phototherapy. Small 2021;17:e2101180. [PMID: 34145754 DOI: 10.1002/smll.202101180] [Reference Citation Analysis]
3 Monjo AL, Pringle ES, Thornbury M, Duguay BA, Monro SMA, Hetu M, Knight D, Cameron CG, McFarland SA, McCormick C. Photodynamic Inactivation of Herpes Simplex Viruses. Viruses 2018;10:E532. [PMID: 30274257 DOI: 10.3390/v10100532] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
4 Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020;5:100035. [PMID: 32211603 DOI: 10.1016/j.mtbio.2019.100035] [Cited by in Crossref: 65] [Cited by in F6Publishing: 48] [Article Influence: 21.7] [Reference Citation Analysis]
5 Zhang W, Zhang A, Sun W, Yue Y, Li H. Efficacy and safety of photodynamic therapy for cervical intraepithelial neoplasia and human papilloma virus infection: A systematic review and meta-analysis of randomized clinical trials. Medicine (Baltimore) 2018;97:e10864. [PMID: 29794788 DOI: 10.1097/MD.0000000000010864] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
6 Roque JA 3rd, Barrett PC, Cole HD, Lifshits LM, Bradner E, Shi G, von Dohlen D, Kim S, Russo N, Deep G, Cameron CG, Alberto ME, McFarland SA. Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorg Chem 2020;59:16341-60. [PMID: 33126792 DOI: 10.1021/acs.inorgchem.0c02137] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
7 Thomas B, Yan K, Hu X, Donnier-maréchal M, Chen G, He X, Vidal S. Fluorescent glycoconjugates and their applications. Chem Soc Rev 2020;49:593-641. [DOI: 10.1039/c8cs00118a] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 9.5] [Reference Citation Analysis]
8 Alberdi E, Gómez C. Efficiency of methylene blue-mediated photodynamic therapy vs intense pulsed light in the treatment of onychomycosis in the toenails. Photodermatol Photoimmunol Photomed 2019;35:69-77. [DOI: 10.1111/phpp.12420] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
9 Liu B, Jiao J, Xu W, Zhang M, Cui P, Guo Z, Deng Y, Chen H, Sun W. Highly Efficient Far-Red/NIR-Absorbing Neutral Ir(III) Complex Micelles for Potent Photodynamic/Photothermal Therapy. Adv Mater 2021;33:e2100795. [PMID: 34219286 DOI: 10.1002/adma.202100795] [Reference Citation Analysis]
10 Gjuroski I, Furrer J, Vermathen M. How Does the Encapsulation of Porphyrinic Photosensitizers into Polymer Matrices Affect Their Self-Association and Dynamic Properties? Chemphyschem 2018;19:1089-102. [PMID: 29384257 DOI: 10.1002/cphc.201701318] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
11 Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020;17:657-74. [DOI: 10.1038/s41571-020-0410-2] [Cited by in Crossref: 219] [Cited by in F6Publishing: 186] [Article Influence: 109.5] [Reference Citation Analysis]
12 Wu L, Cai X, Zhu H, Li J, Shi D, Su D, Yue D, Gu Z. PDT-Driven Highly Efficient Intracellular Delivery and Controlled Release of CO in Combination with Sufficient Singlet Oxygen Production for Synergistic Anticancer Therapy. Adv Funct Mater 2018;28:1804324. [DOI: 10.1002/adfm.201804324] [Cited by in Crossref: 54] [Cited by in F6Publishing: 37] [Article Influence: 13.5] [Reference Citation Analysis]
13 Mo J, Mai Le NP, Priefer R. Evaluating the mechanisms of action and subcellular localization of ruthenium(II)-based photosensitizers. Eur J Med Chem 2021;225:113770. [PMID: 34403979 DOI: 10.1016/j.ejmech.2021.113770] [Reference Citation Analysis]
14 James NS, Cheruku RR, Missert JR, Sunar U, Pandey RK. Measurement of Cyanine Dye Photobleaching in Photosensitizer Cyanine Dye Conjugates Could Help in Optimizing Light Dosimetry for Improved Photodynamic Therapy of Cancer. Molecules 2018;23:E1842. [PMID: 30042350 DOI: 10.3390/molecules23081842] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
15 Peng W, de Bruijn HS, Ten Hagen TLM, van Dam GM, Roodenburg JLN, Berg K, Witjes MJH, Robinson DJ. Targeted Photodynamic Therapy of Human Head and Neck Squamous Cell Carcinoma with Anti-epidermal Growth Factor Receptor Antibody Cetuximab and Photosensitizer IR700DX in the Mouse Skin-fold Window Chamber Model. Photochem Photobiol 2020;96:708-17. [PMID: 32222965 DOI: 10.1111/php.13267] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
16 Wilson BC, Jermyn M, Leblond F. Challenges and opportunities in clinical translation of biomedical optical spectroscopy and imaging. J Biomed Opt 2018;23:1-13. [PMID: 29512358 DOI: 10.1117/1.JBO.23.3.030901] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 8.7] [Reference Citation Analysis]
17 Wang D, Wu H, Lim WQ, Phua SZF, Xu P, Chen Q, Guo Z, Zhao Y. A Mesoporous Nanoenzyme Derived from Metal–Organic Frameworks with Endogenous Oxygen Generation to Alleviate Tumor Hypoxia for Significantly Enhanced Photodynamic Therapy. Adv Mater 2019;31:1901893. [DOI: 10.1002/adma.201901893] [Cited by in Crossref: 124] [Cited by in F6Publishing: 102] [Article Influence: 41.3] [Reference Citation Analysis]
18 Kurokawa H, Ito H, Matsui H. Porphylipoprotein Accumulation and Porphylipoprotein Photodynamic Therapy Effects Involving Cancer Cell-Specific Cytotoxicity. Int J Mol Sci 2021;22:7306. [PMID: 34298933 DOI: 10.3390/ijms22147306] [Reference Citation Analysis]
19 Nath S, Obaid G, Hasan T. The Course of Immune Stimulation by Photodynamic Therapy: Bridging Fundamentals of Photochemically Induced Immunogenic Cell Death to the Enrichment of T-Cell Repertoire. Photochem Photobiol 2019;95:1288-305. [PMID: 31602649 DOI: 10.1111/php.13173] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
20 Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front Chem 2021;9:691697. [PMID: 34178948 DOI: 10.3389/fchem.2021.691697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Mfouo-Tynga IS, Dias LD, Inada NM, Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagnosis Photodyn Ther 2021;34:102091. [PMID: 33453423 DOI: 10.1016/j.pdpdt.2020.102091] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
22 Wang Q, Li J, Yu H, Deng K, Zhou W, Wang C, Zhang Y, Li K, Zhuo R, Huang S. Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy. Biomater Sci 2018;6:3096-107. [DOI: 10.1039/c8bm00852c] [Cited by in Crossref: 30] [Cited by in F6Publishing: 5] [Article Influence: 7.5] [Reference Citation Analysis]
23 Dang J, He H, Chen D, Yin L. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater Sci 2017;5:1500-11. [DOI: 10.1039/c7bm00392g] [Cited by in Crossref: 138] [Cited by in F6Publishing: 39] [Article Influence: 27.6] [Reference Citation Analysis]
24 Jiménez J, Prieto-Montero R, Maroto BL, Moreno F, Ortiz MJ, Oliden-Sánchez A, López-Arbeloa I, Martínez-Martínez V, de la Moya S. Manipulating Charge-Transfer States in BODIPYs: A Model Strategy to Rapidly Develop Photodynamic Theragnostic Agents. Chemistry 2020;26:601-5. [PMID: 31846138 DOI: 10.1002/chem.201904257] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
25 Vorotnikov YA, Novikova ED, Solovieva AO, Shanshin DV, Tsygankova AR, Shcherbakov DN, Efremova OA, Shestopalov MA. Single-domain antibody C7b for address delivery of nanoparticles to HER2-positive cancers. Nanoscale 2020;12:21885-94. [DOI: 10.1039/d0nr04899b] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Bispo M, Suhani S, van Dijl JM. Empowering antimicrobial photodynamic therapy of Staphylococcus aureus infections with potassium iodide. J Photochem Photobiol B 2021;225:112334. [PMID: 34678616 DOI: 10.1016/j.jphotobiol.2021.112334] [Reference Citation Analysis]
27 Vighetto V, Ancona A, Racca L, Limongi T, Troia A, Canavese G, Cauda V. The Synergistic Effect of Nanocrystals Combined With Ultrasound in the Generation of Reactive Oxygen Species for Biomedical Applications. Front Bioeng Biotechnol 2019;7:374. [PMID: 32039170 DOI: 10.3389/fbioe.2019.00374] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
28 Xing Y, Cai Y, Cheng J, Xu X. Applications of molybdenum oxide nanomaterials in the synergistic diagnosis and treatment of tumor. Appl Nanosci 2020;10:2069-83. [DOI: 10.1007/s13204-020-01389-9] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Cole HD, Roque JA 3rd, Lifshits LM, Hodges R, Barrett PC, Havrylyuk D, Heidary D, Ramasamy E, Cameron CG, Glazer EC, McFarland SA. Fine-Feature Modifications to Strained Ruthenium Complexes Radically Alter Their Hypoxic Anticancer Activity. Photochem Photobiol 2021. [PMID: 33559191 DOI: 10.1111/php.13395] [Reference Citation Analysis]
30 Qin X, Wang Z, Guo C, Jin Y. Multi-responsive drug delivery nanoplatform for tumor-targeted synergistic photothermal/dynamic therapy and chemotherapy. New J Chem 2020;44:3593-603. [DOI: 10.1039/c9nj05650e] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
31 Cai Z, Xin F, Wei Z, Wu M, Lin X, Du X, Chen G, Zhang D, Zhang Z, Liu X, Yao C. Photodynamic Therapy Combined with Antihypoxic Signaling and CpG Adjuvant as an In Situ Tumor Vaccine Based on Metal–Organic Framework Nanoparticles to Boost Cancer Immunotherapy. Adv Healthcare Mater 2019;9:1900996. [DOI: 10.1002/adhm.201900996] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 13.7] [Reference Citation Analysis]
32 Turubanova VD, Balalaeva IV, Mishchenko TA, Catanzaro E, Alzeibak R, Peskova NN, Efimova I, Bachert C, Mitroshina EV, Krysko O, Vedunova MV, Krysko DV. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J Immunother Cancer. 2019;7:350. [PMID: 31842994 DOI: 10.1186/s40425-019-0826-3] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 13.7] [Reference Citation Analysis]
33 Dai G, Choi CKK, Zhou Y, Bai Q, Xiao Y, Yang C, Choi CHJ, Ng DKP. Immobilising hairpin DNA-conjugated distyryl boron dipyrromethene on gold@polydopamine core-shell nanorods for microRNA detection and microRNA-mediated photodynamic therapy. Nanoscale 2021;13:6499-512. [PMID: 33885529 DOI: 10.1039/d0nr09135a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Didamson OC, Abrahamse H. Targeted Photodynamic Diagnosis and Therapy for Esophageal Cancer: Potential Role of Functionalized Nanomedicine. Pharmaceutics 2021;13:1943. [PMID: 34834358 DOI: 10.3390/pharmaceutics13111943] [Reference Citation Analysis]
35 Simelane NWN, Kruger CA, Abrahamse H. Targeted Nanoparticle Photodynamic Diagnosis and Therapy of Colorectal Cancer. Int J Mol Sci 2021;22:9779. [PMID: 34575942 DOI: 10.3390/ijms22189779] [Reference Citation Analysis]
36 Yang M, Li X, Yoon J. Activatable supramolecular photosensitizers: advanced design strategies. Mater Chem Front 2021;5:1683-93. [DOI: 10.1039/d0qm00827c] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Adelnia A, Mokhtari-Dizaji M, Hoseinkhani S, Bakhshandeh M. The effect of dual-frequency ultrasound waves on B16F10 melanoma cells: Sonodynamic therapy using nanoliposomes containing methylene blue. Skin Res Technol 2021;27:376-84. [PMID: 33085810 DOI: 10.1111/srt.12961] [Reference Citation Analysis]
38 He B, Situ B, Zhao Z, Zheng L. Promising Applications of AIEgens in Animal Models. Small Methods 2020;4:1900583. [DOI: 10.1002/smtd.201900583] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
39 Dutta D, Sailapu SK, Simon AT, Ghosh SS, Chattopadhyay A. Gold-Nanocluster-Embedded Mucin Nanoparticles for Photodynamic Therapy and Bioimaging. Langmuir 2019;35:10475-83. [DOI: 10.1021/acs.langmuir.9b00998] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
40 Li Y, Sun P, Zhao L, Yan X, Ng DKP, Lo P. Ferric Ion Driven Assembly of Catalase‐like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angew Chem Int Ed 2020;59:23228-38. [DOI: 10.1002/anie.202010005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
41 Usama SM, Thavornpradit S, Burgess K. Optimized Heptamethine Cyanines for Photodynamic Therapy. ACS Appl Bio Mater 2018;1:1195-205. [DOI: 10.1021/acsabm.8b00414] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
42 Nascimento BFO, Laranjo M, Pereira NAM, Dias-Ferreira J, Piñeiro M, Botelho MF, Pinho E Melo TMVD. Ring-Fused Diphenylchlorins as Potent Photosensitizers for Photodynamic Therapy Applications: In Vitro Tumor Cell Biology and in Vivo Chick Embryo Chorioallantoic Membrane Studies. ACS Omega 2019;4:17244-50. [PMID: 31656898 DOI: 10.1021/acsomega.9b01865] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
43 Hester SC, Kuriakose M, Nguyen CD, Mallidi S. Role of Ultrasound and Photoacoustic Imaging in Photodynamic Therapy for Cancer. Photochem Photobiol 2020;96:260-79. [PMID: 31919853 DOI: 10.1111/php.13217] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
44 Han Y, An Y, Jia G, Wang X, He C, Ding Y, Tang Q. Theranostic micelles based on upconversion nanoparticles for dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Nanoscale 2018;10:6511-23. [DOI: 10.1039/c7nr09717d] [Cited by in Crossref: 43] [Cited by in F6Publishing: 16] [Article Influence: 10.8] [Reference Citation Analysis]
45 Portugal I, Jain S, Severino P, Priefer R. Micro- and Nano-Based Transdermal Delivery Systems of Photosensitizing Drugs for the Treatment of Cutaneous Malignancies. Pharmaceuticals (Basel) 2021;14:772. [PMID: 34451868 DOI: 10.3390/ph14080772] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Lifshits LM, Roque Iii JA, Konda P, Monro S, Cole HD, von Dohlen D, Kim S, Deep G, Thummel RP, Cameron CG, Gujar S, McFarland SA. Near-infrared absorbing Ru(ii) complexes act as immunoprotective photodynamic therapy (PDT) agents against aggressive melanoma. Chem Sci 2020;11:11740-62. [PMID: 33976756 DOI: 10.1039/d0sc03875j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
47 Dhillon SK, Porter SL, Rizk N, Sheng Y, Mckaig T, Burnett K, White B, Nesbitt H, Matin RN, Mchale AP, Callan B, Callan JF. Rose Bengal–Amphiphilic Peptide Conjugate for Enhanced Photodynamic Therapy of Malignant Melanoma. J Med Chem 2020;63:1328-36. [DOI: 10.1021/acs.jmedchem.9b01802] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
48 Nguyen L, Li M, Woo S, You Y. Development of Prodrugs for PDT-Based Combination Therapy Using a Singlet-Oxygen-Sensitive Linker and Quantitative Systems Pharmacology. J Clin Med 2019;8:E2198. [PMID: 31847080 DOI: 10.3390/jcm8122198] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Wang D, Shi R, Zhou J, Shi S, Wu H, Xu P, Wang H, Xia G, Barnhart TE, Cai W, Guo Z, Chen Q. Photo-Enhanced Singlet Oxygen Generation of Prussian Blue-Based Nanocatalyst for Augmented Photodynamic Therapy. iScience 2018;9:14-26. [PMID: 30368078 DOI: 10.1016/j.isci.2018.10.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
50 Chu JCH, Fong WP, Wong CTT, Ng DKP. Facile Synthesis of Cyclic Peptide-Phthalocyanine Conjugates for Epidermal Growth Factor Receptor-Targeted Photodynamic Therapy. J Med Chem 2021;64:2064-76. [PMID: 33577327 DOI: 10.1021/acs.jmedchem.0c01677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Liu Y, van der Mei HC, Zhao B, Zhai Y, Cheng T, Li Y, Zhang Z, Busscher HJ, Ren Y, Shi L. Eradication of Multidrug-Resistant Staphylococcal Infections by Light-Activatable Micellar Nanocarriers in a Murine Model. Adv Funct Mater 2017;27:1701974. [DOI: 10.1002/adfm.201701974] [Cited by in Crossref: 67] [Cited by in F6Publishing: 54] [Article Influence: 13.4] [Reference Citation Analysis]
52 Dan Q, Hu D, Ge Y, Zhang S, Li S, Gao D, Luo W, Ma T, Liu X, Zheng H, Li Y, Sheng Z. Ultrasmall theranostic nanozymes to modulate tumor hypoxia for augmenting photodynamic therapy and radiotherapy. Biomater Sci 2020;8:973-87. [DOI: 10.1039/c9bm01742a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
53 Liu Y, Fens MHAM, Lou B, van Kronenburg NCH, Maas-Bakker RFM, Kok RJ, Oliveira S, Hennink WE, van Nostrum CF. π-π-Stacked Poly(ε-caprolactone)-b-poly(ethylene glycol) Micelles Loaded with a Photosensitizer for Photodynamic Therapy. Pharmaceutics 2020;12:E338. [PMID: 32283871 DOI: 10.3390/pharmaceutics12040338] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Hou X, Tao Y, Li X, Pang Y, Yang C, Jiang G, Liu Y. CD44-Targeting Oxygen Self-Sufficient Nanoparticles for Enhanced Photodynamic Therapy Against Malignant Melanoma. Int J Nanomedicine 2020;15:10401-16. [PMID: 33376328 DOI: 10.2147/IJN.S283515] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Otvagin VF, Kuzmina NS, Krylova LV, Volovetsky AB, Nyuchev AV, Gavryushin AE, Meshkov IN, Gorbunova YG, Romanenko YV, Koifman OI, Balalaeva IV, Fedorov AY. Water-Soluble Chlorin/Arylaminoquinazoline Conjugate for Photodynamic and Targeted Therapy. J Med Chem 2019;62:11182-93. [PMID: 31782925 DOI: 10.1021/acs.jmedchem.9b01294] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
56 Mugas ML, Calvo G, Marioni J, Céspedes M, Martinez F, Vanzulli S, Sáenz D, Di Venosa G, Nuñez Montoya S, Casas A. Photosensitization of a subcutaneous tumour by the natural anthraquinone parietin and blue light. Sci Rep 2021;11:23820. [PMID: 34893702 DOI: 10.1038/s41598-021-03339-z] [Reference Citation Analysis]
57 Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021;13:4447. [PMID: 34503255 DOI: 10.3390/cancers13174447] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Pizzuti VJ, Viswanath D, Torregrosa-allen SE, Currie MP, Elzey BD, Won Y. Bilirubin-Coated Radioluminescent Particles for Radiation-Induced Photodynamic Therapy. ACS Appl Bio Mater 2020;3:4858-72. [DOI: 10.1021/acsabm.0c00354] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
59 Bolze F, Jenni S, Sour A, Heitz V. Molecular photosensitisers for two-photon photodynamic therapy. Chem Commun (Camb) 2017;53:12857-77. [PMID: 29115314 DOI: 10.1039/c7cc06133a] [Cited by in Crossref: 114] [Cited by in F6Publishing: 22] [Article Influence: 28.5] [Reference Citation Analysis]
60 Kim KR, Röthlisberger P, Kang SJ, Nam K, Lee S, Hollenstein M, Ahn DR. Shaping Rolling Circle Amplification Products into DNA Nanoparticles by Incorporation of Modified Nucleotides and Their Application to In Vitro and In Vivo Delivery of a Photosensitizer. Molecules 2018;23:E1833. [PMID: 30041480 DOI: 10.3390/molecules23071833] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
61 Gao D, Lo P. Combined pH-responsive chemotherapy and glutathione-triggered photosensitization to overcome drug-resistant hepatocellular carcinoma — a SPP/JPP Young Investigator Award paper. J Porphyrins Phthalocyanines 2020;24:1387-401. [DOI: 10.1142/s1088424620500212] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
62 Duan X, Chen B, Cui Y, Zhou L, Wu C, Yang Z, Wen Y, Miao X, Li Q, Xiong L, He J. Ready player one? Autophagy shapes resistance to photodynamic therapy in cancers. Apoptosis. 2018;23:587-606. [PMID: 30288638 DOI: 10.1007/s10495-018-1489-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
63 de Souza BTL, Klosowski EM, Mito MS, Constantin RP, Mantovanelli GC, Mewes JM, Bizerra PFV, da Silva FSI, Menezes PVMDC, Gilglioni EH, Utsunomiya KS, Marchiosi R, Dos Santos WD, Ferrarese-Filho O, Caetano W, de Souza Pereira PC, Gonçalves RS, Constantin J, Ishii-Iwamoto EL, Constantin RP. The photosensitiser azure A disrupts mitochondrial bioenergetics through intrinsic and photodynamic effects. Toxicology 2021;455:152766. [PMID: 33775737 DOI: 10.1016/j.tox.2021.152766] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Racca L, Cauda V. Remotely Activated Nanoparticles for Anticancer Therapy. Nanomicro Lett 2020;13:11. [PMID: 34138198 DOI: 10.1007/s40820-020-00537-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
65 Padrutt R, Babu V, Klingler S, Kalt M, Schumer F, Anania MI, Schneider L, Spingler B. Highly Phototoxic Transplatin-Modified Distyryl-BODIPY Photosensitizers for Photodynamic Therapy. ChemMedChem 2021;16:694-701. [PMID: 33164336 DOI: 10.1002/cmdc.202000702] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
66 Kostryukova LV, Prozorovskiy VN, Medvedeva NV, Ipatova OM. Comparison of a new nanoform of the photosensitizer chlorin e6, based on plant phospholipids, with its free form. FEBS Open Bio 2018;8:201-10. [PMID: 29435410 DOI: 10.1002/2211-5463.12359] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
67 Rocha MST, Lucci CM, Dos Santos JAM, Longo JPF, Muehlmann LA, Azevedo RB. Photodynamic therapy for cutaneous hemangiosarcoma in dogs. Photodiagnosis Photodyn Ther 2019;27:39-43. [PMID: 31125768 DOI: 10.1016/j.pdpdt.2019.05.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
68 Li B, Zhang X, Lu Y, Zhao L, Guo Y, Guo S, Kang Q, Liu J, Dai L, Zhang L, Fan D, Ji Z. Protein 4.1R affects photodynamic therapy for B16 melanoma by regulating the transport of 5-aminolevulinic acid. Exp Cell Res 2021;399:112465. [PMID: 33385415 DOI: 10.1016/j.yexcr.2020.112465] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
69 Justiniano R, de Faria Lopes L, Perer J, Hua A, Park SL, Jandova J, Baptista MS, Wondrak GT. The Endogenous Tryptophan-derived Photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) is a Nanomolar Photosensitizer that Can be Harnessed for the Photodynamic Elimination of Skin Cancer Cells in Vitro and in Vivo. Photochem Photobiol 2021;97:180-91. [PMID: 32767762 DOI: 10.1111/php.13321] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
70 Zhang Y, Shi M, Yan Z, Zhang S, Wang M, Xu H, Li H, Ying Y, Qiu S, Liu J, Yang H, Chen H, He H, Guo Z. Ultrastable Near‐Infrared Nonlinear Organic Chromophore Nanoparticles with Intramolecular Charge Transfer for Dually Photoinduced Tumor Ablation. Adv Healthcare Mater 2020;9:2001042. [DOI: 10.1002/adhm.202001042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
71 Liu M, Li C. Recent Advances in Activatable Organic Photosensitizers for Specific Photodynamic Therapy. Chempluschem 2020;85:948-57. [PMID: 32401421 DOI: 10.1002/cplu.202000203] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
72 Wong RCH, Ng DKP, Fong W, Lo P. Glutathione- and light-controlled generation of singlet oxygen for triggering drug release in mesoporous silica nanoparticles. J Mater Chem B 2020;8:4460-8. [DOI: 10.1039/d0tb00636j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
73 Hasanin MS, Abdelraof M, Fikry M, Shaker YM, Sweed AMK, Senge MO. Development of Antimicrobial Laser-Induced Photodynamic Therapy Based on Ethylcellulose/Chitosan Nanocomposite with 5,10,15,20-Tetrakis(m-Hydroxyphenyl)porphyrin. Molecules 2021;26:3551. [PMID: 34200763 DOI: 10.3390/molecules26123551] [Reference Citation Analysis]
74 Yan S, Huang Q, Chen J, Song X, Chen Z, Huang M, Xu P, Zhang J. Tumor-targeting photodynamic therapy based on folate-modified polydopamine nanoparticles. Int J Nanomedicine 2019;14:6799-812. [PMID: 31692522 DOI: 10.2147/IJN.S216194] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
75 de Albuquerque IO, Nunes J, Figueiró Longo JP, Muehlmann LA, Azevedo RB. Photodynamic therapy in superficial basal cell carcinoma treatment. Photodiagnosis Photodyn Ther 2019;27:428-32. [PMID: 31349099 DOI: 10.1016/j.pdpdt.2019.07.017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
76 Lu S, Liu Y, Shi R, Zhou P. Successful Treatment of Adult-Onset Recurrent Respiratory Papillomatosis with CO2 Laser and Photodynamic Therapy. Case Rep Otolaryngol 2019;2019:7394879. [PMID: 31737395 DOI: 10.1155/2019/7394879] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
77 Khot MI, Perry SL, Maisey T, Armstrong G, Andrew H, Hughes TA, Kapur N, Jayne DG. Inhibiting ABCG2 could potentially enhance the efficacy of hypericin-mediated photodynamic therapy in spheroidal cell models of colorectal cancer. Photodiagnosis and Photodynamic Therapy 2018;23:221-9. [DOI: 10.1016/j.pdpdt.2018.06.027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
78 Wang YY, Chen YK, Hu CS, Xiao LY, Huang WL, Chi TC, Cheng KH, Wang YM, Yuan SF. MAL-PDT inhibits oral precancerous cells and lesions via autophagic cell death. Oral Dis 2019;25:758-71. [PMID: 30620118 DOI: 10.1111/odi.13036] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
79 Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis 2017;22:1321-35. [PMID: 28936716 DOI: 10.1007/s10495-017-1424-9] [Cited by in Crossref: 188] [Cited by in F6Publishing: 180] [Article Influence: 47.0] [Reference Citation Analysis]
80 Winifred Nompumelelo Simelane N, Abrahamse H. Nanoparticle-Mediated Delivery Systems in Photodynamic Therapy of Colorectal Cancer. Int J Mol Sci 2021;22:12405. [PMID: 34830287 DOI: 10.3390/ijms222212405] [Reference Citation Analysis]
81 Heukers R, Mashayekhi V, Ramirez-Escudero M, de Haard H, Verrips TC, van Bergen En Henegouwen PMP, Oliveira S. VHH-Photosensitizer Conjugates for Targeted Photodynamic Therapy of Met-Overexpressing Tumor Cells. Antibodies (Basel) 2019;8:E26. [PMID: 31544832 DOI: 10.3390/antib8020026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
82 Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020;120:13135-272. [PMID: 33125209 DOI: 10.1021/acs.chemrev.0c00663] [Cited by in Crossref: 46] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
83 Chu JCH, Shao C, Ha SYY, Fong WP, Wong CTT, Ng DKP. One-pot peptide cyclisation and surface modification of photosensitiser-loaded red blood cells for targeted photodynamic therapy. Biomater Sci 2021;9:7832-7. [PMID: 34726672 DOI: 10.1039/d1bm01306h] [Reference Citation Analysis]
84 Hananya N, Green O, Blau R, Satchi-fainaro R, Shabat D. A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells. Angew Chem 2017;129:11955-8. [DOI: 10.1002/ange.201705803] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
85 Yakavets I, Millard M, Zorin V, Lassalle HP, Bezdetnaya L. Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. J Control Release 2019;304:268-87. [PMID: 31136810 DOI: 10.1016/j.jconrel.2019.05.035] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 9.3] [Reference Citation Analysis]
86 Peskova NN, Brilkina AA, Gorokhova AA, Shilyagina NY, Kutova OM, Nerush AS, Orlova AG, Klapshina LG, Vodeneev VV, Balalaeva IV. The localization of the photosensitizer determines the dynamics of the secondary production of hydrogen peroxide in cell cytoplasm and mitochondria. J Photochem Photobiol B 2021;219:112208. [PMID: 33989888 DOI: 10.1016/j.jphotobiol.2021.112208] [Reference Citation Analysis]
87 Raschpichler M, Preis E, Pinnapireddy SR, Baghdan E, Pourasghar M, Schneider M, Bakowsky U. Photodynamic inactivation of circulating tumor cells: An innovative approach against metastatic cancer. Eur J Pharm Biopharm 2020;157:38-46. [PMID: 33059005 DOI: 10.1016/j.ejpb.2020.10.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
88 Álvarez D, Menéndez MI, López R. Computational Design of Rhenium(I) Carbonyl Complexes for Anticancer Photodynamic Therapy. Inorg Chem 2021. [PMID: 34913679 DOI: 10.1021/acs.inorgchem.1c03130] [Reference Citation Analysis]
89 Zhou Y, Wong RCH, Dai G, Ng DKP. A bioorthogonally activatable photosensitiser for site-specific photodynamic therapy. Chem Commun 2020;56:1078-81. [DOI: 10.1039/c9cc07938f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
90 Zafon E, Echevarría I, Barrabés S, Manzano BR, Jalón FA, Rodríguez AM, Massaguer A, Espino G. Photodynamic therapy with mitochondria-targeted biscyclometallated Ir(III) complexes. Multi-action mechanism and strong influence of the cyclometallating ligand. Dalton Trans 2021;51:111-28. [PMID: 34873601 DOI: 10.1039/d1dt03080a] [Reference Citation Analysis]
91 Kellesarian SV, Qayyum F, de Freitas PC, Akram Z, Javed F. Is antimicrobial photodynamic therapy a useful therapeutic protocol for oral decontamination? A systematic review and meta-analysis. Photodiagnosis and Photodynamic Therapy 2017;20:55-61. [DOI: 10.1016/j.pdpdt.2017.08.012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
92 Doix B, Bastien E, Rambaud A, Pinto A, Louis C, Grégoire V, Riant O, Feron O. Preclinical Evaluation of White Led-Activated Non-porphyrinic Photosensitizer OR141 in 3D Tumor Spheroids and Mouse Skin Lesions. Front Oncol 2018;8:393. [PMID: 30298119 DOI: 10.3389/fonc.2018.00393] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
93 Essaid D, Tfayli A, Maillard P, Sandt C, Rosilio V, Baillet-Guffroy A, Kasselouri A. Retinoblastoma membrane models and their interactions with porphyrin photosensitisers: An infrared microspectroscopy study. Chem Phys Lipids 2018;215:34-45. [PMID: 30026072 DOI: 10.1016/j.chemphyslip.2018.07.003] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
94 Yan S, Guo H, Su J, Chen J, Song X, Huang M, Zhang J, Chen Z. Effects of hydroxyl radicals produced by a zinc phthalocyanine photosensitizer on tumor DNA. Dyes and Pigments 2020;173:107894. [DOI: 10.1016/j.dyepig.2019.107894] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
95 Ferroni C, Del Rio A, Martini C, Manoni E, Varchi G. Light-Induced Therapies for Prostate Cancer Treatment. Front Chem 2019;7:719. [PMID: 31737599 DOI: 10.3389/fchem.2019.00719] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
96 Nkune NW, Abrahamse H. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. Int J Mol Sci 2021;22:12549. [PMID: 34830431 DOI: 10.3390/ijms222212549] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Nompumelelo Simelane NW, Kruger CA, Abrahamse H. Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo. RSC Adv 2020;10:41560-76. [DOI: 10.1039/d0ra08617g] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
98 Barrabés S, Ng-Choi I, Martínez MÁ, Manzano BR, Jalón FA, Espino G, Feliu L, Planas M, de Llorens R, Massaguer A. A nucleus-directed bombesin derivative for targeted delivery of metallodrugs to cancer cells. J Inorg Biochem 2020;212:111214. [PMID: 32919249 DOI: 10.1016/j.jinorgbio.2020.111214] [Reference Citation Analysis]
99 Pavlíčková V, Jurášek M, Rimpelová S, Záruba K, Sedlák D, Šimková M, Kodr D, Staňková E, Fähnrich J, Rottnerová Z, Bartůněk P, Lapčík O, Drašar P, Ruml T. Oxime-based 19-nortestosterone-pheophorbide a conjugate: bimodal controlled release concept for PDT. J Mater Chem B 2019;7:5465-77. [PMID: 31414695 DOI: 10.1039/c9tb01301f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
100 Karges J. Clinical Development of Metal Complexes as Photosensitizers for Photodynamic Therapy of Cancer. Angew Chem Int Ed Engl 2021. [PMID: 34748690 DOI: 10.1002/anie.202112236] [Reference Citation Analysis]
101 Otvagin VF, Nyuchev AV, Kuzmina NS, Grishin ID, Gavryushin AE, Romanenko YV, Koifman OI, Belykh DV, Peskova NN, Shilyagina NY, Balalaeva IV, Fedorov AY. Synthesis and biological evaluation of new water-soluble photoactive chlorin conjugate for targeted delivery. European Journal of Medicinal Chemistry 2018;144:740-50. [DOI: 10.1016/j.ejmech.2017.12.062] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
102 Kirillin M, Kurakina D, Khilov A, Orlova A, Shakhova M, Orlinskaya N, Sergeeva E. Red and blue light in antitumor photodynamic therapy with chlorin-based photosensitizers: a comparative animal study assisted by optical imaging modalities. Biomed Opt Express 2021;12:872-92. [PMID: 33680547 DOI: 10.1364/BOE.411518] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
103 Blum NT, Zhang Y, Qu J, Lin J, Huang P. Recent Advances in Self-Exciting Photodynamic Therapy. Front Bioeng Biotechnol 2020;8:594491. [PMID: 33195164 DOI: 10.3389/fbioe.2020.594491] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
104 Wong RCH, Ng DKP, Fong W, Lo P. Encapsulating pH-Responsive Doxorubicin-Phthalocyanine Conjugates in Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Controlled Chemotherapy. Chem Eur J 2017;23:16505-15. [DOI: 10.1002/chem.201703188] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
105 Charron DM, Yousefalizadeh G, Buzzá HH, Rajora MA, Chen J, Stamplecoskie KG, Zheng G. Photophysics of J-Aggregating Porphyrin-Lipid Photosensitizers in Liposomes: Impact of Lipid Saturation. Langmuir 2020;36:5385-93. [DOI: 10.1021/acs.langmuir.0c00843] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
106 Tabero A, García-Garrido F, Prieto-Castañeda A, Palao E, Agarrabeitia AR, García-Moreno I, Villanueva A, de la Moya S, Ortiz MJ. BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis. Chem Commun (Camb) 2020;56:940-3. [PMID: 31850455 DOI: 10.1039/c9cc09397d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 4.7] [Reference Citation Analysis]
107 Loonat A, Pellow J, Abrahamse H, Chandran R. Can Nanoparticles in Homeopathic Remedies Enhance Phototherapy of Cancer? A Hypothetical Model. Homeopathy 2021. [PMID: 34788870 DOI: 10.1055/s-0041-1735581] [Reference Citation Analysis]
108 Crous A, Abrahamse H. Aluminium (III) phthalocyanine chloride tetrasulphonate is an effective photosensitizer for the eradication of lung cancer stem cells. R Soc Open Sci 2021;8:210148. [PMID: 34527268 DOI: 10.1098/rsos.210148] [Reference Citation Analysis]
109 Zhang Y, Hao Y, Chen S, Xu M. Photodynamic Therapy of Cancers With Internal Light Sources: Chemiluminescence, Bioluminescence, and Cerenkov Radiation. Front Chem 2020;8:770. [PMID: 33088801 DOI: 10.3389/fchem.2020.00770] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
110 Hosokawa S, Takahashi G, Sugiyama KI, Takebayashi S, Okamura J, Takizawa Y, Mineta H. Porfimer sodium-mediated photodynamic therapy in patients with head and neck squamous cell carcinoma. Photodiagnosis Photodyn Ther 2020;29:101627. [PMID: 31866532 DOI: 10.1016/j.pdpdt.2019.101627] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
111 Ailioaie LM, Litscher G. Curcumin and Photobiomodulation in Chronic Viral Hepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2020;21:E7150. [PMID: 32998270 DOI: 10.3390/ijms21197150] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
112 Huang Y, Liu Y, Chen Y, Song M, Huang M, Xue J, Liu L, Li J. Probing the interactions of phthalocyanine-based photosensitizers with model phospholipid bilayer by molecular dynamics simulations. J Porphyrins Phthalocyanines 2018;22:764-70. [DOI: 10.1142/s1088424618500566] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
113 Li Y, Wong RCH, Yan X, Ng DKP, Lo P. Self-Assembled Nanophotosensitizing Systems with Zinc(II) Phthalocyanine-Peptide Conjugates as Building Blocks for Targeted Chemo-Photodynamic Therapy. ACS Appl Bio Mater 2020;3:5463-73. [DOI: 10.1021/acsabm.0c00214] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
114 Zhai Y, Busscher HJ, Liu Y, Zhang Z, van Kooten TG, Su L, Zhang Y, Liu J, Liu J, An Y, Shi L. Photoswitchable Micelles for the Control of Singlet-Oxygen Generation in Photodynamic Therapies. Biomacromolecules 2018;19:2023-33. [DOI: 10.1021/acs.biomac.8b00085] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
115 Shi Q, Tao Z, Yang H, Fan Q, Wei D, Wan L, Lu X. PDGFRβ-specific affibody-directed delivery of a photosensitizer, IR700, is efficient for vascular-targeted photodynamic therapy of colorectal cancer. Drug Deliv 2017;24:1818-30. [PMID: 29182023 DOI: 10.1080/10717544.2017.1407011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
116 Shi J, Wang D, Ma Y, Liu J, Li Y, Reza R, Zhang Z, Liu J, Zhang K. Photoactivated Self-Disassembly of Multifunctional DNA Nanoflower Enables Amplified Autophagy Suppression for Low-Dose Photodynamic Therapy. Small 2021;:e2104722. [PMID: 34672076 DOI: 10.1002/smll.202104722] [Reference Citation Analysis]
117 Scholz M, Petusseau AF, Gunn JR, Shane Chapman M, Pogue BW. Imaging of hypoxia, oxygen consumption and recovery in vivo during ALA-photodynamic therapy using delayed fluorescence of Protoporphyrin IX. Photodiagnosis and Photodynamic Therapy 2020;30:101790. [DOI: 10.1016/j.pdpdt.2020.101790] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
118 Shramova EI, Proshkina GM, Deyev SM, Petrov RV. Death Mechanism of Breast Adenocarcinoma Cells Caused by BRET-Induced Cytotoxicity of miniSOG Depends on the Intracellular Localization of the NanoLuc–miniSOG Fusion Protein. Dokl Biochem Biophys 2018;482:288-91. [DOI: 10.1134/s1607672918050150] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
119 Clement S, Guller A, Mahbub SB, Goldys EM. Oxygen-Carrying Polymer Nanoconstructs for Radiodynamic Therapy of Deep Hypoxic Malignant Tumors. Biomedicines 2021;9:322. [PMID: 33810115 DOI: 10.3390/biomedicines9030322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
120 Hananya N, Shabat D. Recent Advances and Challenges in Luminescent Imaging: Bright Outlook for Chemiluminescence of Dioxetanes in Water. ACS Cent Sci 2019;5:949-59. [PMID: 31263754 DOI: 10.1021/acscentsci.9b00372] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 18.7] [Reference Citation Analysis]
121 Zheng B, Ye J, Zhang X, Zhang N, Xiao M. Recent advances in supramolecular activatable phthalocyanine-based photosensitizers for anti-cancer therapy. Coordination Chemistry Reviews 2021;447:214155. [DOI: 10.1016/j.ccr.2021.214155] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
122 Chang JE, Liu Y, Lee TH, Lee WK, Yoon I, Kim K. Tumor Size-Dependent Anticancer Efficacy of Chlorin Derivatives for Photodynamic Therapy. Int J Mol Sci. 2018;19. [PMID: 29844257 DOI: 10.3390/ijms19061596] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
123 McFarland SA, Mandel A, Dumoulin-White R, Gasser G. Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology? Curr Opin Chem Biol 2020;56:23-7. [PMID: 31759225 DOI: 10.1016/j.cbpa.2019.10.004] [Cited by in Crossref: 84] [Cited by in F6Publishing: 67] [Article Influence: 28.0] [Reference Citation Analysis]
124 Tarhouni M, Durand D, Önal E, Aggad D, İşci Ü, Ekineker G, Brégier F, Jamoussi B, Sol V, Gary-bobo M, Dumoulin F. Triphenylphosphonium-substituted phthalocyanine: Design, synthetic strategy, photoproperties and photodynamic activity. J Porphyrins Phthalocyanines 2018;22:552-61. [DOI: 10.1142/s1088424618500554] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
125 Abdel‐aal MAA, Abdel‐aziz SA, Shaykoon MSA, Abuo‐rahma GEA. Towards anticancer fluoroquinolones: A review article. Arch Pharm Chem Life Sci 2019;352:1800376. [DOI: 10.1002/ardp.201800376] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
126 Turchin I, Bano S, Kirillin M, Orlova A, Perekatova V, Plekhanov V, Sergeeva E, Kurakina D, Khilov A, Kurnikov A, Subochev P, Shirmanova M, Komarova A, Yuzhakova D, Gavrina A, Mallidi S, Hasan T. Combined Fluorescence and Optoacoustic Imaging for Monitoring Treatments against CT26 Tumors with Photoactivatable Liposomes. Cancers (Basel) 2021;14:197. [PMID: 35008362 DOI: 10.3390/cancers14010197] [Reference Citation Analysis]
127 Wang B, Dai Y, Kong Y, Du W, Ni H, Zhao H, Sun Z, Shen Q, Li M, Fan Q. Tumor Microenvironment-Responsive Fe(III)–Porphyrin Nanotheranostics for Tumor Imaging and Targeted Chemodynamic–Photodynamic Therapy. ACS Appl Mater Interfaces 2020;12:53634-45. [DOI: 10.1021/acsami.0c14046] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
128 Wang Q, Ng DKP, Lo P. Functional aza-boron dipyrromethenes for subcellular imaging and organelle-specific photodynamic therapy. J Mater Chem B 2018;6:3285-96. [DOI: 10.1039/c8tb00593a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 3.8] [Reference Citation Analysis]
129 Sioud M, Juzenas P, Zhang Q, Kleinauskas A, Peng Q. Evaluation of In Vitro Phototoxicity of a Minibody-IR700 Conjugate Using Cell Monolayer and Multicellular Tumor Spheroid Models. Cancers (Basel) 2021;13:3356. [PMID: 34283089 DOI: 10.3390/cancers13133356] [Reference Citation Analysis]
130 Martins TD, Lima E, Boto RE, Ferreira D, Fernandes JR, Almeida P, Ferreira LFV, Silva AM, Reis LV. Red and Near-Infrared Absorbing DicyanomethyleneSquaraine Cyanine Dyes: PhotophysicochemicalProperties and Anti-Tumor Photosensitizing Effects. Materials (Basel) 2020;13:E2083. [PMID: 32369923 DOI: 10.3390/ma13092083] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
131 Clemente N, Miletto I, Gianotti E, Invernizzi M, Marchese L, Dianzani U, Renò F. Verteporfin-loaded mesoporous silica nanoparticles inhibit mouse melanoma proliferation in vitro and in vivo. J Photochem Photobiol B 2019;197:111533. [PMID: 31254952 DOI: 10.1016/j.jphotobiol.2019.111533] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
132 Ohashi N, Nomura A, Kodera M, Hitomi Y. Structurally Simple Cell-permeable Porphyrins: Efficient Cellular Uptake and Phototoxicity of Porphyrins with Four Peripheral Primary-amine-terminated Oligo(ethylene oxide) Chains. Chem Lett 2017;46:1754-6. [DOI: 10.1246/cl.170821] [Reference Citation Analysis]
133 Schmitt J, Jenni S, Sour A, Heitz V, Bolze F, Pallier A, Bonnet CS, Tóth É, Ventura B. A Porphyrin Dimer–GdDOTA Conjugate as a Theranostic Agent for One- and Two-Photon Photodynamic Therapy and MRI. Bioconjugate Chem 2018;29:3726-38. [DOI: 10.1021/acs.bioconjchem.8b00634] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
134 Suvorov N, Pogorilyy V, Diachkova E, Vasil'ev Y, Mironov A, Grin M. Derivatives of Natural Chlorophylls as Agents for Antimicrobial Photodynamic Therapy. Int J Mol Sci 2021;22:6392. [PMID: 34203767 DOI: 10.3390/ijms22126392] [Reference Citation Analysis]
135 Komarov IV, Afonin S, Babii O, Schober T, Ulrich AS. Efficiently Photocontrollable or Not? Biological Activity of Photoisomerizable Diarylethenes. Chemistry 2018;24:11245-54. [PMID: 29633378 DOI: 10.1002/chem.201801205] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
136 Manda G, Hinescu ME, Neagoe IV, Ferreira LF, Boscencu R, Vasos P, Basaga SH, Cuadrado A. Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. CPD 2019;24:5268-95. [DOI: 10.2174/1381612825666190122163832] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
137 Overchuk M, Harmatys KM, Sindhwani S, Rajora MA, Koebel A, Charron DM, Syed AM, Chen J, Pomper MG, Wilson BC, Chan WCW, Zheng G. Subtherapeutic Photodynamic Treatment Facilitates Tumor Nanomedicine Delivery and Overcomes Desmoplasia. Nano Lett 2021;21:344-52. [PMID: 33301689 DOI: 10.1021/acs.nanolett.0c03731] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
138 Baghdan E, Duse L, Schüer JJ, Pinnapireddy SR, Pourasghar M, Schäfer J, Schneider M, Bakowsky U. Development of inhalable curcumin loaded Nano-in-Microparticles for bronchoscopic photodynamic therapy. Eur J Pharm Sci 2019;132:63-71. [PMID: 30797026 DOI: 10.1016/j.ejps.2019.02.025] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
139 Mao W, Liao Y, Ma D. A supramolecular assembly mediated by host–guest interactions for improved chemo–photodynamic combination therapy. Chem Commun 2020;56:4192-5. [DOI: 10.1039/d0cc01096k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
140 Yan Z, Wang M, Shi M, He Y, Zhang Y, Qiu S, Yang H, Chen H, He H, Guo Z. Amphiphilic BODIPY dye aggregates in polymeric micelles for wavelength-dependent photo-induced cancer therapy. J Mater Chem B 2020;8:6886-97. [PMID: 32323684 DOI: 10.1039/d0tb00609b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
141 Shi H, Sadler PJ. How promising is phototherapy for cancer? Br J Cancer 2020;123:871-3. [PMID: 32587359 DOI: 10.1038/s41416-020-0926-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
142 Silva FALS, Costa-Almeida R, Timochenco L, Amaral SI, Pinto S, Gonçalves IC, Fernandes JR, Magalhães FD, Sarmento B, Pinto AM. Graphene Oxide Topical Administration: Skin Permeability Studies. Materials (Basel) 2021;14:2810. [PMID: 34070414 DOI: 10.3390/ma14112810] [Reference Citation Analysis]
143 Gonçalves RS, Braga G, de Oliveira ACV, César GB, Tominaga TT, Zampiere EH, Calori IR, de Morais FAP, Basso EA, Pontes RM, Hioka N, Caetano W. Hypericin Delivery System Based on P84 Copolymeric Micelles Linked with N -(3-Aminopropyl)-2-pyrrolidone for Melanoma-Targeted Photodynamic Therapy. ACS Appl Polym Mater 2020;2:1692-701. [DOI: 10.1021/acsapm.0c00114] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
144 Jiang Z, Yang Z, Li F, Li Z, Fishkin N, Burgess K. Targeted Maytansinoid Conjugate Improves Therapeutic Index for Metastatic Breast Cancer Cells. Bioconjugate Chem 2018;29:2920-6. [DOI: 10.1021/acs.bioconjchem.8b00340] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
145 Paraboschi I, Turnock S, Kramer-Marek G, Musleh L, Barisa M, Anderson J, Giuliani S. Near-InfraRed PhotoImmunoTherapy (NIR-PIT) for the local control of solid cancers: Challenges and potentials for human applications. Crit Rev Oncol Hematol 2021;161:103325. [PMID: 33836238 DOI: 10.1016/j.critrevonc.2021.103325] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
146 Wang K, Yu B, Pathak JL. An update in clinical utilization of photodynamic therapy for lung cancer. J Cancer 2021;12:1154-60. [PMID: 33442413 DOI: 10.7150/jca.51537] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
147 Carobeli LR, Meirelles LEF, Damke GMZF, Damke E, Souza MVF, Mari NL, Mashiba KH, Shinobu-Mesquita CS, Souza RP, Silva VRSD, Gonçalves RS, Caetano W, Consolaro MEL. Phthalocyanine and Its Formulations: A Promising Photosensitizer for Cervical Cancer Phototherapy. Pharmaceutics 2021;13:2057. [PMID: 34959339 DOI: 10.3390/pharmaceutics13122057] [Reference Citation Analysis]
148 Beltrán Hernández I, Yu Y, Ossendorp F, Korbelik M, Oliveira S. Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. J Clin Med 2020;9:E333. [PMID: 31991650 DOI: 10.3390/jcm9020333] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
149 Ghazal B, Kaya EN, Husain A, Ganesan A, Durmuş M, Makhseed S. Biotinylated-cationic zinc(II) phthalocyanine towards photodynamic therapy. J Porphyrins Phthalocyanines 2019;23:46-55. [DOI: 10.1142/s1088424618501158] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
150 Feng Y, Wu Y, Zuo J, Tu L, Que I, Chang Y, Cruz LJ, Chan A, Zhang H. Assembly of upconversion nanophotosensitizer in vivo to achieve scatheless real-time imaging and selective photodynamic therapy. Biomaterials 2019;201:33-41. [PMID: 30784770 DOI: 10.1016/j.biomaterials.2019.02.015] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
151 Zhou M, Liu X, Chen F, Yang L, Yuan M, Fu DY, Wang W, Yu H. Stimuli-activatable nanomaterials for phototherapy of cancer. Biomed Mater 2021;16. [PMID: 33882463 DOI: 10.1088/1748-605X/abfa6e] [Reference Citation Analysis]
152 Halaskova M, Rahali A, Almeida-Marrero V, Machacek M, Kucera R, Jamoussi B, Torres T, Novakova V, de la Escosura A, Zimcik P. Peripherally Crowded Cationic Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy. ACS Med Chem Lett 2021;12:502-7. [PMID: 33738078 DOI: 10.1021/acsmedchemlett.1c00045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
153 Lin G, Hu M, Zhang R, Zhu Y, Gu K, Bai J, Li J, Dong X, Zhao W. Discovery of Meso-(meta-Pyridinium) BODIPY Photosensitizers: In Vitro and In Vivo Evaluations for Antimicrobial Photodynamic Therapy. J Med Chem 2021;64:18143-57. [PMID: 34881897 DOI: 10.1021/acs.jmedchem.1c01643] [Reference Citation Analysis]
154 Chang MH, Hsiao YP, Hsu CY, Lai PS. Photo-Crosslinked Polymeric Matrix with Antimicrobial Functions for Excisional Wound Healing in Mice. Nanomaterials (Basel) 2018;8:E791. [PMID: 30301173 DOI: 10.3390/nano8100791] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
155 Lum YL, Luk JM, Staunton DE, Ng DKP, Fong WP. Cadherin-17 Targeted Near-Infrared Photoimmunotherapy for Treatment of Gastrointestinal Cancer. Mol Pharm 2020;17:3941-51. [PMID: 32931292 DOI: 10.1021/acs.molpharmaceut.0c00700] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
156 Li L, Shao C, Liu T, Chao Z, Chen H, Xiao F, He H, Wei Z, Zhu Y, Wang H, Zhang X, Wen Y, Yang B, He F, Tian L. An NIR-II-Emissive Photosensitizer for Hypoxia-Tolerant Photodynamic Theranostics. Adv Mater 2020;32:e2003471. [PMID: 33029855 DOI: 10.1002/adma.202003471] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 10.5] [Reference Citation Analysis]
157 Daugelaviciene N, Grigaitis P, Gasiule L, Dabkeviciene D, Neniskyte U, Sasnauskiene A. Lysosome-targeted photodynamic treatment induces primary keratinocyte differentiation. J Photochem Photobiol B 2021;218:112183. [PMID: 33831753 DOI: 10.1016/j.jphotobiol.2021.112183] [Reference Citation Analysis]
158 Hu J, Luo H, Qu Q, Liao X, Huang C, Chen J, Cai Z, Bao Y, Chen G, Li B, Cui W. Cell Membrane-Inspired Polymeric Vesicles for Combined Photothermal and Photodynamic Prostate Cancer Therapy. ACS Appl Mater Interfaces 2020;12:42511-20. [PMID: 32897691 DOI: 10.1021/acsami.0c11636] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
159 Luo M, Li H, Han D, Yang K, Kang L. Inhibition of autophagy enhances apoptosis induced by Ce6-photodynamic therapy in human colon cancer cells. Photodiagnosis Photodyn Ther 2021;36:102605. [PMID: 34715368 DOI: 10.1016/j.pdpdt.2021.102605] [Reference Citation Analysis]
160 Karagöz ID, Yilmaz Y, Sanusi K. Anticancer Activity Study and Density Functional/Time-Dependent Density Functional Theory (DFT/TD-DFT) Calculations of 2(3),9(10),16(17),23(24)-Tetrakis-(6-Methylpyridin-2-Yloxy)Phthalocyaninato Zn(II). J Fluoresc 2020;30:1151-60. [PMID: 32648171 DOI: 10.1007/s10895-020-02584-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
161 Issawi M, Leroy-Lhez S, Sol V, Riou C. Crossing the First Threshold: New Insights into the Influence of the Chemical Structure of Anionic Porphyrins on Plant Cell Wall Interactions and Photodynamic Cell Death Induction. Biochemistry 2019;58:2188-97. [PMID: 30942568 DOI: 10.1021/acs.biochem.9b00107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
162 [DOI: 10.1117/12.2525313] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
163 Cao JJ, Zhang MS, Li XQ, Yang DC, Xu G, Liu JY. A glutathione-responsive photosensitizer with fluorescence resonance energy transfer characteristics for imaging-guided targeting photodynamic therapy. Eur J Med Chem 2020;193:112203. [PMID: 32197150 DOI: 10.1016/j.ejmech.2020.112203] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
164 Ming L, Cheng K, Chen Y, Yang R, Chen D. Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Med 2021;10:257-68. [PMID: 33141513 DOI: 10.1002/cam4.3592] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
165 Maldonado-Carmona N, Ouk TS, Calvete MJF, Pereira MM, Villandier N, Leroy-Lhez S. Conjugating biomaterials with photosensitizers: advances and perspectives for photodynamic antimicrobial chemotherapy. Photochem Photobiol Sci 2020;19:445-61. [PMID: 32104827 DOI: 10.1039/c9pp00398c] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
166 Kollar J, Machacek M, Halaskova M, Lenco J, Kucera R, Demuth J, Rohlickova M, Hasonova K, Miletin M, Novakova V, Zimcik P. Cationic Versus Anionic Phthalocyanines for Photodynamic Therapy: What a Difference the Charge Makes. J Med Chem 2020;63:7616-32. [DOI: 10.1021/acs.jmedchem.0c00481] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
167 Chen J, Wang Y, Fang Y, Jiang Z, Wang A, Xue J. Improved photodynamic anticancer activity and mechanisms of a promising zinc(II) phthalocyanine-quinoline conjugate photosensitizer in vitro and in vivo. Biomed Opt Express 2020;11:3900-12. [PMID: 33014574 DOI: 10.1364/BOE.394186] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
168 Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol 2021;45:102056. [PMID: 34229160 DOI: 10.1016/j.redox.2021.102056] [Reference Citation Analysis]
169 Raimundo AFG, Dos Santos KBP, Klosowski EM, de Souza BTL, Mito MS, Constantin RP, Mantovanelli GC, Mewes JM, Bizerra PFV, Menezes PVMDC, Utsunomiya KS, Gilglioni EH, Marchiosi R, Dantas Dos Santos W, Ferrarese-Filho O, Caetano W, Pereira PCS, Gonçalves RS, Constantin J, Ishii-Iwamoto EL, Constantin RP. The photodynamic and intrinsic effects of Azure B on mitochondrial bioenergetics and the consequences of its intrinsic effects on hepatic energy metabolism. Photodiagnosis Photodyn Ther 2021;35:102446. [PMID: 34289416 DOI: 10.1016/j.pdpdt.2021.102446] [Reference Citation Analysis]
170 Soliman N, McKenzie LK, Karges J, Bertrand E, Tharaud M, Jakubaszek M, Guérineau V, Goud B, Hollenstein M, Gasser G, Thomas CM. Ruthenium-initiated polymerization of lactide: a route to remarkable cellular uptake for photodynamic therapy of cancer. Chem Sci 2020;11:2657-63. [PMID: 34084324 DOI: 10.1039/c9sc05976h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
171 Ko C, Li G, Leung C, Ma D. Dual function luminescent transition metal complexes for cancer theranostics: The combination of diagnosis and therapy. Coordination Chemistry Reviews 2019;381:79-103. [DOI: 10.1016/j.ccr.2018.11.013] [Cited by in Crossref: 61] [Cited by in F6Publishing: 37] [Article Influence: 20.3] [Reference Citation Analysis]
172 Tabero A, Planas O, Gallavardin T, Nieves I, Nonell S, Villanueva A. Smart Dual-Functionalized Gold Nanoclusters for Spatio-Temporally Controlled Delivery of Combined Chemo- and Photodynamic Therapy. Nanomaterials (Basel) 2020;10:E2474. [PMID: 33321776 DOI: 10.3390/nano10122474] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
173 Sun M, Zhang Y, He Y, Xiong M, Huang H, Pei S, Liao J, Wang Y, Shao D. Green synthesis of carrier-free curcumin nanodrugs for light-activated breast cancer photodynamic therapy. Colloids and Surfaces B: Biointerfaces 2019;180:313-8. [DOI: 10.1016/j.colsurfb.2019.04.061] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
174 Alphandéry E. Light-Interacting iron-based nanomaterials for localized cancer detection and treatment. Acta Biomater 2021;124:50-71. [PMID: 33540060 DOI: 10.1016/j.actbio.2021.01.028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
175 Sengar P, Garcia-tapia K, Chauhan K, Jain A, Juarez-moreno K, Borbón-nuñez HA, Tiznado H, Contreras OE, Hirata GA. Dual-photosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy. Journal of Colloid and Interface Science 2019;536:586-97. [DOI: 10.1016/j.jcis.2018.10.090] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
176 van den Brand D, van Lith SAM, de Jong JM, Gorris MAJ, Palacio-Castañeda V, Couwenbergh ST, Goldman MRG, Ebisch I, Massuger LF, Leenders WPJ, Brock R, Verdurmen WPR. EpCAM-Binding DARPins for Targeted Photodynamic Therapy of Ovarian Cancer. Cancers (Basel) 2020;12:E1762. [PMID: 32630661 DOI: 10.3390/cancers12071762] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
177 Smithen DA, Monro S, Pinto M, Roque J 3rd, Diaz-Rodriguez RM, Yin H, Cameron CG, Thompson A, McFarland SA. Bis[pyrrolyl Ru(ii)] triads: a new class of photosensitizers for metal-organic photodynamic therapy. Chem Sci 2020;11:12047-69. [PMID: 33738086 DOI: 10.1039/d0sc04500d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
178 Zhao Y, Moritz T, Hinds MF, Gunn JR, Shell JR, Pogue BW, Davis SJ. High optical-throughput spectroscopic singlet oxygen and photosensitizer luminescence dosimeter for monitoring of photodynamic therapy. J Biophotonics 2021;:e202100088. [PMID: 34323374 DOI: 10.1002/jbio.202100088] [Reference Citation Analysis]
179 Peng W, de Bruijn HS, Ten Hagen TLM, Berg K, Roodenburg JLN, van Dam GM, Witjes MJH, Robinson DJ. In-Vivo Optical Monitoring of the Efficacy of Epidermal Growth Factor Receptor Targeted Photodynamic Therapy: The Effect of Fluence Rate. Cancers (Basel) 2020;12:E190. [PMID: 31940973 DOI: 10.3390/cancers12010190] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
180 Song J, Zhang L, Yi H, Huang J, Zhang N, Zhong Y, Hao L, Ke Yang, Wang Z, Wang D, Yang Z. NIR-responsive nanoplatform for pre/intraoperative image-guided carcinoma surgery and photothermal ablation of residual tumor tissue. Nanomedicine: Nanotechnology, Biology and Medicine 2019;20:102020. [DOI: 10.1016/j.nano.2019.102020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
181 Dubey SK, Pradyuth SK, Saha RN, Singhvi G, Alexander A, Agrawal M, Shapiro BA, Puri A. Application of photodynamic therapy drugs for management of glioma. J Porphyrins Phthalocyanines 2019;23:1216-28. [DOI: 10.1142/s1088424619300192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
182 Zhang B, Xu Z, Zhou W, Liu Z, Zhao J, Gou S. A light-controlled multi-step drug release nanosystem targeting tumor hypoxia for synergistic cancer therapy. Chem Sci 2021;12:11810-20. [PMID: 34659720 DOI: 10.1039/d1sc01888d] [Reference Citation Analysis]
183 Bartusik-Aebisher D, Ożóg Ł, Aebisher D. Alternative methods of photodynamic therapy and oxygen consumption measurements-A review. Biomed Pharmacother 2021;134:111095. [PMID: 33341048 DOI: 10.1016/j.biopha.2020.111095] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
184 Boros E, Dyson PJ, Gasser G. Classification of Metal-based Drugs According to Their Mechanisms of Action. Chem 2020;6:41-60. [PMID: 32864503 DOI: 10.1016/j.chempr.2019.10.013] [Cited by in Crossref: 61] [Cited by in F6Publishing: 43] [Article Influence: 20.3] [Reference Citation Analysis]
185 Brillo V, Chieregato L, Leanza L, Muccioli S, Costa R. Mitochondrial Dynamics, ROS, and Cell Signaling: A Blended Overview. Life (Basel) 2021;11:332. [PMID: 33920160 DOI: 10.3390/life11040332] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
186 Zhang Y, Wang CX, Huang SW. Aggregation-Induced Emission (AIE) Polymeric Micelles for Imaging-Guided Photodynamic Cancer Therapy. Nanomaterials (Basel) 2018;8:E921. [PMID: 30405085 DOI: 10.3390/nano8110921] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
187 Laranjo M, Aguiar MC, Pereira NAM, Brites G, Nascimento BFO, Brito AF, Casalta-Lopes J, Gonçalves AC, Sarmento-Ribeiro AB, Pineiro M, Botelho MF, Pinho E Melo TMVD. Platinum(II) ring-fused chlorins as efficient theranostic agents: Dyes for tumor-imaging and photodynamic therapy of cancer. Eur J Med Chem 2020;200:112468. [PMID: 32512486 DOI: 10.1016/j.ejmech.2020.112468] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
188 Guo Y, Liu H, Xiao H, Yuan M, Liu Y, Sedlařík V, Chin WC, Liu J, Guo L, Li C. Self-assembled Camptothecin derivatives - Curcuminoids conjugate for combinatorial chemo-photodynamic therapy to enhance anti-tumor efficacy. J Photochem Photobiol B 2021;215:112124. [PMID: 33486396 DOI: 10.1016/j.jphotobiol.2021.112124] [Reference Citation Analysis]
189 Liang J, Pitsillou E, Ververis K, Guallar V, Hung A, Karagiannis TC. Small molecule interactions with the SARS-CoV-2 main protease: In silico all-atom microsecond MD simulations, PELE Monte Carlo simulations, and determination of in vitro activity inhibition. J Mol Graph Model 2021;110:108050. [PMID: 34655918 DOI: 10.1016/j.jmgm.2021.108050] [Reference Citation Analysis]
190 Liu W, Tian Y, Zhang Y, Liu K, Zhao S, Zhang J, Su Y, Zhao Y, Tang Y, Sun J, Tian W, Song L, Teng Z, Wang S, Lu G. Timely coordinated phototherapy mediated by mesoporous organosilica coated triangular gold nanoprisms. J Mater Chem B 2018;6:3865-75. [DOI: 10.1039/c8tb00541a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
191 Scherbakov AM, Balakhonov RY, Salnikova DI, Sorokin DV, Yadykov AV, Markosyan AI, Shirinian VZ. Light-driven photoswitching of quinazoline analogues of combretastatin A-4 as an effective approach for targeting skin cancer cells. Org Biomol Chem 2021;19:7670-7. [PMID: 34524348 DOI: 10.1039/d1ob01362a] [Reference Citation Analysis]
192 Deken MM, Kijanka MM, Beltrán Hernández I, Slooter MD, de Bruijn HS, van Diest PJ, van Bergen En Henegouwen PMP, Lowik CWGM, Robinson DJ, Vahrmeijer AL, Oliveira S. Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session. J Control Release 2020;323:269-81. [PMID: 32330574 DOI: 10.1016/j.jconrel.2020.04.030] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
193 Bi XD, Yang R, Zhou YC, Chen D, Li GK, Guo YX, Wang MF, Liu D, Gao F. Cyclometalated Iridium(III) Complexes as High-Sensitivity Two-Photon Excited Mitochondria Dyes and Near-Infrared Photodynamic Therapy Agents. Inorg Chem 2020;59:14920-31. [PMID: 32951429 DOI: 10.1021/acs.inorgchem.0c01509] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
194 Kawczyk-krupka A, Latos W, Oleś P, Czuba ZP, Latos M, Krupka M, Pengyun H, Xu C, Cieślar G, Sieroń A. The influence of 5-aminolevulinic photodynamic therapy on colon cancer cell interleukin secretion in hypoxia-like condition in vitro. Photodiagnosis and Photodynamic Therapy 2018;23:240-3. [DOI: 10.1016/j.pdpdt.2018.07.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
195 Capper MS, Enriquez Garcia A, Macia N, Lai B, Lin J, Nomura M, Alihosseinzadeh A, Ponnurangam S, Heyne B, Shemanko CS, Jalilehvand F. Cytotoxicity, cellular localization and photophysical properties of Re(I) tricarbonyl complexes bound to cysteine and its derivatives. J Biol Inorg Chem 2020;25:759-76. [DOI: 10.1007/s00775-020-01798-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
196 Wang P, Liang C, Zhu J, Yang N, Jiao A, Wang W, Song X, Dong X. Manganese-Based Nanoplatform As Metal Ion-Enhanced ROS Generator for Combined Chemodynamic/Photodynamic Therapy. ACS Appl Mater Interfaces 2019;11:41140-7. [PMID: 31603650 DOI: 10.1021/acsami.9b16617] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
197 Chatzisideri T, Thysiadis S, Katsamakas S, Dalezis P, Sigala I, Lazarides T, Nikolakaki E, Trafalis D, Gederaas O, Lindgren M, Sarli V. Synthesis and biological evaluation of a Platinum(II)-c(RGDyK) conjugate for integrin-targeted photodynamic therapy. European Journal of Medicinal Chemistry 2017;141:221-31. [DOI: 10.1016/j.ejmech.2017.09.058] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
198 Yu X, Zheng H, Chan MTV, Wu WKK. Immune consequences induced by photodynamic therapy in non-melanoma skin cancers: a review. Environ Sci Pollut Res 2018;25:20569-74. [DOI: 10.1007/s11356-018-2426-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
199 Jenni S, Bolze F, Bonnet CS, Pallier A, Sour A, Tóth É, Ventura B, Heitz V. Synthesis and In Vitro Studies of a Gd(DOTA)-Porphyrin Conjugate for Combined MRI and Photodynamic Treatment. Inorg Chem 2020;59:14389-98. [PMID: 32960580 DOI: 10.1021/acs.inorgchem.0c02189] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
200 Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019;18:2565-612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Cited by in Crossref: 78] [Cited by in F6Publishing: 36] [Article Influence: 26.0] [Reference Citation Analysis]
201 Xiong T, Li M, Chen Y, Du J, Fan J, Peng X. A singlet oxygen self-reporting photosensitizer for cancer phototherapy. Chem Sci 2020;12:2515-20. [PMID: 34164019 DOI: 10.1039/d0sc05495j] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
202 Yu J, Liu Y, Zhou S, Wang Y, Wang Y. Stimuli-responsive phospholipid-drug conjugates (PDCs)-based nanovesicles for drug delivery and theranostics. Int J Pharm 2020;590:119920. [PMID: 33002539 DOI: 10.1016/j.ijpharm.2020.119920] [Reference Citation Analysis]
203 Costa DF, Mendes LP, Torchilin VP. The effect of low- and high-penetration light on localized cancer therapy. Adv Drug Deliv Rev 2019;138:105-16. [PMID: 30217518 DOI: 10.1016/j.addr.2018.09.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
204 Schneider L, Larocca M, Wu W, Babu V, Padrutt R, Slyshkina E, König C, Ferrari S, Spingler B. Exocyclically metallated tetrapyridinoporphyrazine as a potential photosensitizer for photodynamic therapy. Photochem Photobiol Sci 2019;18:2792-803. [DOI: 10.1039/c9pp00336c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
205 Beltrán Hernández I, Angelier ML, Del Buono D'Ondes T, Di Maggio A, Yu Y, Oliveira S. The Potential of Nanobody-Targeted Photodynamic Therapy to Trigger Immune Responses. Cancers (Basel) 2020;12:E978. [PMID: 32326519 DOI: 10.3390/cancers12040978] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
206 Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12(7): 562-584 [PMID: 32843914 DOI: 10.4252/wjsc.v12.i7.562] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
207 del Rosal B, Jia B, Jaque D. Beyond Phototherapy: Recent Advances in Multifunctional Fluorescent Nanoparticles for Light-Triggered Tumor Theranostics. Adv Funct Mater 2018;28:1803733. [DOI: 10.1002/adfm.201803733] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 7.8] [Reference Citation Analysis]
208 Wang X, Jin J, Li W, Wang Q, Han Y, Liu H. Differential in vitro sensitivity of oral precancerous and squamous cell carcinoma cell lines to 5-aminolevulinic acid-mediated photodynamic therapy. Photodiagnosis and Photodynamic Therapy 2020;29:101554. [DOI: 10.1016/j.pdpdt.2019.08.036] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
209 Ben Mihoub A, Larue L, Moussaron A, Youssef Z, Colombeau L, Baros F, Frochot C, Vanderesse R, Acherar S. Use of Cyclodextrins in Anticancer Photodynamic Therapy Treatment. Molecules 2018;23:E1936. [PMID: 30072672 DOI: 10.3390/molecules23081936] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
210 Mascheroni L, Dozzi MV, Ranucci E, Ferruti P, Francia V, Salvati A, Maggioni D. Tuning Polyamidoamine Design To Increase Uptake and Efficacy of Ruthenium Complexes for Photodynamic Therapy. Inorg Chem 2019;58:14586-99. [DOI: 10.1021/acs.inorgchem.9b02245] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
211 Sahoo S, Podder S, Garai A, Majumdar S, Mukherjee N, Basu U, Nandi D, Chakravarty AR. Iron(III) Complexes of Vitamin B 6 Schiff Base with Boron-Dipyrromethene Pendants for Lysosome-Selective Photocytotoxicity: Iron(III) Complexes of Vitamin B 6 Schiff Base with Boron-Dipyrromethene Pendants for Lysosome-Selective Photocytotoxicity. Eur J Inorg Chem 2018;2018:1522-32. [DOI: 10.1002/ejic.201701487] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
212 Zheng Q, Liu X, Zheng Y, Yeung KWK, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. The recent progress on metal-organic frameworks for phototherapy. Chem Soc Rev 2021;50:5086-125. [PMID: 33634817 DOI: 10.1039/d1cs00056j] [Cited by in Crossref: 8] [Article Influence: 8.0] [Reference Citation Analysis]
213 Wang X, Li M, Hou Y, Li Y, Yao X, Xue C, Fei Y, Xiang Y, Cai K, Zhao Y, Luo Z. Tumor‐Microenvironment‐Activated In Situ Self‐Assembly of Sequentially Responsive Biopolymer for Targeted Photodynamic Therapy. Adv Funct Mater 2020;30:2000229. [DOI: 10.1002/adfm.202000229] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
214 Mascaraque M, Delgado-Wicke P, Damian A, Lucena SR, Carrasco E, Juarranz Á. Mitotic Catastrophe Induced in HeLa Tumor Cells by Photodynamic Therapy with Methyl-aminolevulinate. Int J Mol Sci 2019;20:E1229. [PMID: 30862116 DOI: 10.3390/ijms20051229] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
215 Cadoni E, Manicardi A, Fossépré M, Heirwegh K, Surin M, Madder A. Teaching photosensitizers a new trick: red light-triggered G-quadruplex alkylation by ligand co-localization. Chem Commun (Camb) 2021;57:1010-3. [PMID: 33404017 DOI: 10.1039/d0cc06030e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
216 Qin X, Zhang M, Hu X, Du Q, Zhao Z, Jiang Y, Luan Y. Nanoengineering of a newly designed chlorin e6 derivative for amplified photodynamic therapy via regulating lactate metabolism. Nanoscale 2021;13:11953-62. [PMID: 34212166 DOI: 10.1039/d1nr01083b] [Reference Citation Analysis]
217 Xue P, Hou M, Sun L, Li Q, Zhang L, Xu Z, Kang Y. Calcium-carbonate packaging magnetic polydopamine nanoparticles loaded with indocyanine green for near-infrared induced photothermal/photodynamic therapy. Acta Biomaterialia 2018;81:242-55. [DOI: 10.1016/j.actbio.2018.09.045] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
218 Amaral SI, Costa-almeida R, Gonçalves IC, Magalhães FD, Pinto AM. Carbon nanomaterials for phototherapy of cancer and microbial infections. Carbon 2021. [DOI: 10.1016/j.carbon.2021.12.084] [Reference Citation Analysis]
219 Ramsay D, Stevenson H, Jerjes W. From Basic Mechanisms to Clinical Research: Photodynamic Therapy Applications in Head and Neck Malignancies and Vascular Anomalies. J Clin Med 2021;10:4404. [PMID: 34640423 DOI: 10.3390/jcm10194404] [Reference Citation Analysis]
220 Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem 2021;9:686303. [PMID: 34409014 DOI: 10.3389/fchem.2021.686303] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
221 Lenna S, Bellotti C, Duchi S, Martella E, Columbaro M, Dozza B, Ballestri M, Guerrini A, Sotgiu G, Frisoni T, Cevolani L, Varchi G, Ferrari M, Donati DM, Lucarelli E. Mesenchymal stromal cells mediated delivery of photoactive nanoparticles inhibits osteosarcoma growth in vitro and in a murine in vivo ectopic model. J Exp Clin Cancer Res. 2020;39:40. [PMID: 32087737 DOI: 10.1186/s13046-020-01548-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
222 Moghassemi S, Dadashzadeh A, Azevedo RB, Feron O, Amorim CA. Photodynamic cancer therapy using liposomes as an advanced vesicular photosensitizer delivery system. J Control Release 2021;339:75-90. [PMID: 34562540 DOI: 10.1016/j.jconrel.2021.09.024] [Reference Citation Analysis]
223 De Groof TWM, Mashayekhi V, Fan TS, Bergkamp ND, Sastre Toraño J, van Senten JR, Heukers R, Smit MJ, Oliveira S. Nanobody-Targeted Photodynamic Therapy Selectively Kills Viral GPCR-Expressing Glioblastoma Cells. Mol Pharm 2019;16:3145-56. [PMID: 31244224 DOI: 10.1021/acs.molpharmaceut.9b00360] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
224 Şueki F, Ruhi MK, Gülsoy M. The effect of curcumin in antitumor photodynamic therapy: In vitro experiments with Caco-2 and PC-3 cancer lines. Photodiagnosis and Photodynamic Therapy 2019;27:95-9. [DOI: 10.1016/j.pdpdt.2019.05.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
225 Prasad R, Jain N, Conde J, Srivastava R. Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances 2020;8:100087. [DOI: 10.1016/j.mtadv.2020.100087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
226 Miletin M, Zimcik P, Novakova V. Photodynamic properties of aza-analogues of phthalocyanines. Photochem Photobiol Sci 2018;17:1749-66. [DOI: 10.1039/c8pp00106e] [Cited by in Crossref: 10] [Article Influence: 2.5] [Reference Citation Analysis]
227 Vallejo MCS, Moura NMM, Gomes ATPC, Joaquinito ASM, Faustino MAF, Almeida A, Gonçalves I, Serra VV, Neves MGPMS. The Role of Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2021;22:4121. [PMID: 33923523 DOI: 10.3390/ijms22084121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
228 Sakima VT, Barbugli PA, Cerri PS, Chorilli M, Carmello JC, Pavarina AC, Mima EGO. Antimicrobial Photodynamic Therapy Mediated by Curcumin-Loaded Polymeric Nanoparticles in a Murine Model of Oral Candidiasis. Molecules 2018;23:E2075. [PMID: 30126245 DOI: 10.3390/molecules23082075] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
229 Wong CTT, Chu JCH, Ha SYY, Wong RCH, Dai G, Kwong TT, Wong CH, Ng DKP. Phthalaldehyde-Amine Capture Reactions for Bioconjugation and Immobilization of Phthalocyanines. Org Lett 2020;22:7098-102. [PMID: 32806143 DOI: 10.1021/acs.orglett.0c02398] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
230 Cisneros JS, Chain CY, Rivas Aiello MB, Parisi J, Castrogiovanni DC, Bosio GN, Mártire DO, Vela ME. Pectin-Coated Plasmonic Nanoparticles for Photodynamic Therapy: Inspecting the Role of Serum Proteins. ACS Omega 2021;6:12567-76. [PMID: 34056407 DOI: 10.1021/acsomega.1c00542] [Reference Citation Analysis]
231 Jenni S, Sour A, Bolze F, Ventura B, Heitz V. Tumour-targeting photosensitisers for one- and two-photon activated photodynamic therapy. Org Biomol Chem 2019;17:6585-94. [DOI: 10.1039/c9ob00731h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
232 Liang C, Zhang X, Yang M, Wang W, Chen P, Dong X. Remodeling Tumor Microenvironment by Multifunctional Nanoassemblies for Enhanced Photodynamic Cancer Therapy. ACS Materials Lett 2020;2:1268-86. [DOI: 10.1021/acsmaterialslett.0c00259] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
233 Li Y, Li X, Zhou F, Doughty A, Hoover AR, Nordquist RE, Chen WR. Nanotechnology-based photoimmunological therapies for cancer. Cancer Lett 2019;442:429-38. [PMID: 30476523 DOI: 10.1016/j.canlet.2018.10.044] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
234 van Lith SA, van den Brand D, Wallbrecher R, Wübbeke L, van Duijnhoven SM, Mäkinen PI, Hoogstad-van Evert JS, Massuger L, Ylä-herttuala S, Brock R, Leenders WP. The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates. European Journal of Pharmaceutics and Biopharmaceutics 2018;124:63-72. [DOI: 10.1016/j.ejpb.2017.12.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
235 Yu L, Wang Q, Wong RC, Zhao S, Ng DK, Lo P. Synthesis and biological evaluation of phthalocyanine-peptide conjugate for EGFR-targeted photodynamic therapy and bioimaging. Dyes and Pigments 2019;163:197-203. [DOI: 10.1016/j.dyepig.2018.11.055] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
236 Khan T, Gul NS, Lu X, Kumar R, Choudhary MI, Liang H, Chen Z. Rhodium( iii ) complexes with isoquinoline derivatives as potential anticancer agents: in vitro and in vivo activity studies. Dalton Trans 2019;48:11469-79. [DOI: 10.1039/c9dt01951k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 3.7] [Reference Citation Analysis]
237 Šošić L, Selbo PK, Kotkowska ZK, Kündig TM, Høgset A, Johansen P. Photochemical Internalization: Light Paves Way for New Cancer Chemotherapies and Vaccines. Cancers (Basel) 2020;12:E165. [PMID: 31936595 DOI: 10.3390/cancers12010165] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
238 Rubbiani R, Wu W, Naik A, Larocca M, Schneider L, Padrutt R, Babu V, König C, Hinger D, Maake C, Ferrari S, Gasser G, Spingler B. Studying the cellular distribution of highly phototoxic platinated metalloporphyrins using isotope labelling. Chem Commun (Camb) 2020;56:14373-6. [PMID: 33140750 DOI: 10.1039/d0cc05196a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
239 Solovieva AO, Kirakci K, Ivanov AA, Kubát P, Pozmogova TN, Miroshnichenko SM, Vorontsova EV, Chechushkov AV, Trifonova KE, Fufaeva MS, Kretov EI, Mironov YV, Poveshchenko AF, Lang K, Shestopalov MA. Singlet Oxygen Production and Biological Activity of Hexanuclear Chalcocyanide Rhenium Cluster Complexes [{Re 6 Q 8 }(CN) 6 ] 4– (Q = S, Se, Te). Inorg Chem 2017;56:13491-9. [DOI: 10.1021/acs.inorgchem.7b02212] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
240 Wang Z, Huang L, Yan Y, El‐zohry AM, Toffoletti A, Zhao J, Barbon A, Dick B, Mohammed OF, Han G. Elucidation of the Intersystem Crossing Mechanism in a Helical BODIPY for Low‐Dose Photodynamic Therapy. Angew Chem 2020;132:16248-55. [DOI: 10.1002/ange.202005269] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
241 Zhang X, Wei C, Li Y, Yu D. Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical applications. TrAC Trends in Analytical Chemistry 2019;116:109-21. [DOI: 10.1016/j.trac.2019.03.011] [Cited by in Crossref: 31] [Cited by in F6Publishing: 10] [Article Influence: 10.3] [Reference Citation Analysis]
242 Hananya N, Green O, Blau R, Satchi-fainaro R, Shabat D. A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells. Angew Chem Int Ed 2017;56:11793-6. [DOI: 10.1002/anie.201705803] [Cited by in Crossref: 72] [Cited by in F6Publishing: 62] [Article Influence: 14.4] [Reference Citation Analysis]
243 Lange N, Szlasa W, Saczko J, Chwiłkowska A. Potential of Cyanine Derived Dyes in Photodynamic Therapy. Pharmaceutics 2021;13:818. [PMID: 34072719 DOI: 10.3390/pharmaceutics13060818] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
244 Zheng Y, Sun F, Han X, Xu J, Bu X. Recent Progress in 2D Metal‐Organic Frameworks for Optical Applications. Adv Optical Mater 2020;8:2000110. [DOI: 10.1002/adom.202000110] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
245 Sivasubramanian M, Chuang YC, Chen NT, Lo LW. Seeing Better and Going Deeper in Cancer Nanotheranostics. Int J Mol Sci 2019;20:E3490. [PMID: 31315232 DOI: 10.3390/ijms20143490] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
246 Xue EY, Wong RCH, Wong CTT, Fong W, Ng DKP. Synthesis and biological evaluation of an epidermal growth factor receptor-targeted peptide-conjugated phthalocyanine-based photosensitiser. RSC Adv 2019;9:20652-62. [DOI: 10.1039/c9ra03911b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
247 Liu Z, Wang H, Zhang Z. A valproic acid-modified platinum diimine complex as potential photosensitizer for photodynamic therapy. J Inorg Biochem 2021;222:111508. [PMID: 34116426 DOI: 10.1016/j.jinorgbio.2021.111508] [Reference Citation Analysis]
248 Meng Z, Hou W, Zhou H, Zhou L, Chen H, Wu C. Therapeutic Considerations and Conjugated Polymer-Based Photosensitizers for Photodynamic Therapy. Macromol Rapid Commun 2018;39. [PMID: 29251383 DOI: 10.1002/marc.201700614] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 7.2] [Reference Citation Analysis]
249 Ladeira BMF, Dias CJ, Gomes ATPC, Tomé AC, Neves MGPMS, Moura NMM, Almeida A, Faustino MAF. Cationic Pyrrolidine/Pyrroline-Substituted Porphyrins as Efficient Photosensitizers against E. coli. Molecules 2021;26:464. [PMID: 33477299 DOI: 10.3390/molecules26020464] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
250 Clemente N, Miletto I, Gianotti E, Sabbatini M, Invernizzi M, Marchese L, Dianzani U, Renò F. Verteporfin-Loaded Mesoporous Silica Nanoparticles' Topical Applications Inhibit Mouse Melanoma Lymphangiogenesis and Micrometastasis In Vivo. Int J Mol Sci 2021;22:13443. [PMID: 34948239 DOI: 10.3390/ijms222413443] [Reference Citation Analysis]
251 Pereira NAM, Laranjo M, Pina J, Oliveira ASR, Ferreira JD, Sánchez-Sánchez C, Casalta-Lopes J, Gonçalves AC, Sarmento-Ribeiro AB, Piñeiro M, Seixas de Melo JS, Botelho MF, Pinho E Melo TMVD. Advances on photodynamic therapy of melanoma through novel ring-fused 5,15-diphenylchlorins. Eur J Med Chem 2018;146:395-408. [PMID: 29407966 DOI: 10.1016/j.ejmech.2017.12.093] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
252 Lioret V, Bellaye PS, Arnould C, Collin B, Decréau RA. Dual Cherenkov Radiation-Induced Near-Infrared Luminescence Imaging and Photodynamic Therapy toward Tumor Resection. J Med Chem 2020;63:9446-56. [PMID: 32706253 DOI: 10.1021/acs.jmedchem.0c00625] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
253 Vieira Ferreira L, Ferreira Machado I, Gama A, Lochte F, Socoteanu R, Boscencu R. Surface photochemical studies of nano-hybrids of A3B porphyrins and Fe3O4 silica-coated nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry 2020;387:112152. [DOI: 10.1016/j.jphotochem.2019.112152] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
254 Foglietta F, Gola G, Biasibetti E, Capucchio MT, Bruni I, Francovich A, Durando G, Serpe L, Canaparo R. 5-Aminolevulinic Acid Triggered by Ultrasound Halts Tumor Proliferation in a Syngeneic Model of Breast Cancer. Pharmaceuticals (Basel) 2021;14:972. [PMID: 34681196 DOI: 10.3390/ph14100972] [Reference Citation Analysis]
255 McNicholas K, MacGregor MN, Gleadle JM. In order for the light to shine so brightly, the darkness must be present-why do cancers fluoresce with 5-aminolaevulinic acid? Br J Cancer 2019;121:631-9. [PMID: 31406300 DOI: 10.1038/s41416-019-0516-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
256 Sandland J, Boyle RW. Photosensitizer Antibody–Drug Conjugates: Past, Present, and Future. Bioconjugate Chem 2019;30:975-93. [DOI: 10.1021/acs.bioconjchem.9b00055] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
257 Tonon CC, Ashraf S, Alburquerque JQ, de Souza Rastelli AN, Hasan T, Lyons AM, Greer A. Antimicrobial Photodynamic Inactivation Using Topical and Superhydrophobic Sensitizer Techniques: A Perspective from Diffusion in Biofilms. Photochem Photobiol 2021. [PMID: 34097752 DOI: 10.1111/php.13461] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
258 Nanashima A, Hiyoshi M, Imamura N, Yano K, Hamada T, Kai K. Recent Advances in Photodynamic Imaging and Therapy in Hepatobiliary Malignancies: Clinical and Experimental Aspects. Curr Oncol 2021;28:4067-79. [PMID: 34677263 DOI: 10.3390/curroncol28050345] [Reference Citation Analysis]
259 Ayuk SM, Abrahamse H. mTOR Signaling Pathway in Cancer Targets Photodynamic Therapy In Vitro. Cells 2019;8:431. [DOI: 10.3390/cells8050431] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
260 Rodrigues MC, Vieira LG, Horst FH, de Araújo EC, Ganassin R, Merker C, Meyer T, Böttner J, Venus T, Longo JPF, Chaves SB, Garcia MP, Estrela-Lopis I, Azevedo RB, Muehlmann LA. Photodynamic therapy mediated by aluminium-phthalocyanine nanoemulsion eliminates primary tumors and pulmonary metastases in a murine 4T1 breast adenocarcinoma model. J Photochem Photobiol B 2020;204:111808. [PMID: 32006892 DOI: 10.1016/j.jphotobiol.2020.111808] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
261 Ghazal B, Husain A, Ganesan A, Durmuş M, Zhang X, Makhseed S. Exceptionally effective generation of singlet oxygen in aqueous media via iodinated zinc-phthalocyanine. Dyes and Pigments 2019;164:296-304. [DOI: 10.1016/j.dyepig.2019.01.036] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
262 Yudintsev AV, Shilyagina NY, Dyakova DV, Lermontova SA, Klapshina LG, Guryev EL, Balalaeva IV, Vodeneev VA. Liposomal Form of Tetra(Aryl)Tetracyanoporphyrazine: Physical Properties and Photodynamic Activity In Vitro. J Fluoresc 2018;28:513-22. [DOI: 10.1007/s10895-018-2212-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
263 Isaac-Lam MF, Hammonds DM. Synthesis and Photodynamic Activity of Vitamin-Chlorin Conjugates at Nanomolar Concentrations against Prostate Cancer Cells. ACS Omega 2019;4:21712-23. [PMID: 31891050 DOI: 10.1021/acsomega.9b02394] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
264 Santos LL, Oliveira J, Monteiro E, Santos J, Sarmento C. Treatment of Head and Neck Cancer with Photodynamic Therapy with Redaporfin: A Clinical Case Report. Case Rep Oncol 2018;11:769-76. [PMID: 30627091 DOI: 10.1159/000493423] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
265 Biteghe FAN, Chalomie NET, Mungra N, Vignaux G, Gao N, Vergeade A, Okem A, Naran K, Ndong JC, Barth S. Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines 2020;8:E327. [PMID: 32899183 DOI: 10.3390/biomedicines8090327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
266 Luo D, Wang X, Walker E, Wang J, Springer S, Lou J, Ramamurthy G, Burda C, Basilion JP. Nanoparticles Yield Increased Drug Uptake and Therapeutic Efficacy upon Sequential Near-Infrared Irradiation. ACS Nano 2020;14:15193-203. [PMID: 33090762 DOI: 10.1021/acsnano.0c05425] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
267 Hlapisi N, Motaung TE, Linganiso LZ, Oluwafemi OS, Songca SP. Encapsulation of Gold Nanorods with Porphyrins for the Potential Treatment of Cancer and Bacterial Diseases: A Critical Review. Bioinorg Chem Appl 2019;2019:7147128. [PMID: 31182957 DOI: 10.1155/2019/7147128] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
268 Moret F, Reddi E. Strategies for optimizing the delivery to tumors of macrocyclic photosensitizers used in photodynamic therapy (PDT). J Porphyrins Phthalocyanines 2017;21:239-56. [DOI: 10.1142/s1088424617300014] [Cited by in Crossref: 52] [Article Influence: 10.4] [Reference Citation Analysis]
269 Chen D, Yuan W, Park HC, Li X. In vivo assessment of vascular-targeted photodynamic therapy effects on tumor microvasculature using ultrahigh-resolution functional optical coherence tomography. Biomed Opt Express 2020;11:4316-25. [PMID: 32923045 DOI: 10.1364/BOE.397602] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
270 Xue K, Wang YN, Zhao X, Zhang HX, Yu D, Jin CS. Synergistic effect of meta-tetra(hydroxyphenyl)chlorin-based photodynamic therapy followed by cisplatin on malignant Hep-2 cells. Onco Targets Ther 2019;12:5525-36. [PMID: 31371990 DOI: 10.2147/OTT.S198422] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
271 Zhang X, Chen L, Gao L, Gao X, Li N, Song Y, Huang X, Lin S, Wang X. Comparative Study of the Effects of Ferrochelatase-siRNA Transfection Mediated by Ultrasound Microbubbles and Polyethyleneimine in Combination with Low-dose ALA to Enhance PpIX Accumulation in Human Endometrial Cancer Xenograft Nude Mice Models. Photochem Photobiol 2019;95:1045-51. [PMID: 30582757 DOI: 10.1111/php.13076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
272 Vázquez-hernández F, Granada-ramírez D, Arias-cerón J, Rodriguez-fragoso P, Mendoza-álvarez J, Ramón-gallegos E, Cruz-orea A, Luna-arias J. Use of nanostructured materials in drug delivery. Nanobiomaterials. Elsevier; 2018. pp. 503-49. [DOI: 10.1016/b978-0-08-100716-7.00020-9] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
273 Chen L, Zhuang W, Hu C, Yu T, Su X, Liang Z, Li G, Wang Y. pH and singlet oxygen dual-responsive GEM prodrug micelles for efficient combination therapy of chemotherapy and photodynamic therapy. J Mater Chem B 2020;8:5645-54. [DOI: 10.1039/d0tb00622j] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
274 Yang Y, Tu J, Yang D, Raymond JL, Roy RA, Zhang D. Photo- and Sono-Dynamic Therapy: A Review of Mechanisms and Considerations for Pharmacological Agents Used in Therapy Incorporating Light and Sound. Curr Pharm Des 2019;25:401-12. [PMID: 30674248 DOI: 10.2174/1381612825666190123114107] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
275 Liu Y, Zhou Z, Liu Y, Li Y, Huang X, Qian C, Sun M. H 2 O 2 -activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy. Biomater Sci 2019;7:5359-68. [DOI: 10.1039/c9bm01354g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 4.7] [Reference Citation Analysis]
276 Guo X, Jin H, Lo PC. Encapsulating an acid-activatable phthalocyanine-doxorubicin conjugate and the hypoxia-sensitive tirapazamine in polymeric micelles for multimodal cancer therapy. Biomater Sci 2021;9:4936-51. [PMID: 34075948 DOI: 10.1039/d1bm00443c] [Reference Citation Analysis]
277 Roque J 3rd, Havrylyuk D, Barrett PC, Sainuddin T, McCain J, Colón K, Sparks WT, Bradner E, Monro S, Heidary D, Cameron CG, Glazer EC, McFarland SA. Strained, Photoejecting Ru(II) Complexes that are Cytotoxic Under Hypoxic Conditions. Photochem Photobiol 2020;96:327-39. [PMID: 31691282 DOI: 10.1111/php.13174] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
278 Lima MLSO, Braga CB, Becher TB, Odriozola‐gimeno M, Torrent‐sucarrat M, Rivilla I, Cossío FP, Marsaioli AJ, Ornelas C. Fluorescent Imidazo[1,2‐ a ]pyrimidine Compounds as Biocompatible Organic Photosensitizers that Generate Singlet Oxygen: A Potential Tool for Phototheranostics. Chem Eur J 2021;27:6213-22. [DOI: 10.1002/chem.202004957] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
279 Song C, Xu W, Wu H, Wang X, Gong Q, Liu C, Liu J, Zhou L. Photodynamic therapy induces autophagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway. Cell Death Dis 2020;11:938. [PMID: 33130826 DOI: 10.1038/s41419-020-03136-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
280 Lyles ZK, Tarannum M, Mena C, Inada NM, Bagnato VS, Vivero‐escoto JL. Biodegradable Silica‐Based Nanoparticles with Improved and Safe Delivery of Protoporphyrin IX for the In Vivo Photodynamic Therapy of Breast Cancer. Adv Therap 2020;3:2000022. [DOI: 10.1002/adtp.202000022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
281 Liu Y, Fens MHAM, Capomaccio RB, Mehn D, Scrivano L, Kok RJ, Oliveira S, Hennink WE, van Nostrum CF. Correlation between in vitro stability and pharmacokinetics of poly(ε-caprolactone)-based micelles loaded with a photosensitizer. J Control Release 2020;328:942-51. [PMID: 33098910 DOI: 10.1016/j.jconrel.2020.10.040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
282 Cabrera-gonzález J, Soriano J, Conway-kenny R, Wang J, Lu Y, Zhao J, Nogués C, Draper SM. Multinuclear Ru( ii ) and Ir( iii ) decorated tetraphenylporphyrins as efficient PDT agents. Biomater Sci 2019;7:3287-96. [DOI: 10.1039/c9bm00192a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
283 Osaki T, Hibino S, Yokoe I, Yamaguchi H, Nomoto A, Yano S, Mikata Y, Tanaka M, Kataoka H, Okamoto Y. A Basic Study of Photodynamic Therapy with Glucose-Conjugated Chlorin e6 Using Mammary Carcinoma Xenografts. Cancers (Basel) 2019;11:E636. [PMID: 31071967 DOI: 10.3390/cancers11050636] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
284 Zhou R, Ohulchanskyy TY, Xu H, Ziniuk R, Qu J. Catalase Nanocrystals Loaded with Methylene Blue as Oxygen Self-Supplied, Imaging-Guided Platform for Photodynamic Therapy of Hypoxic Tumors. Small 2021;17:e2103569. [PMID: 34532978 DOI: 10.1002/smll.202103569] [Reference Citation Analysis]
285 Hoorelbeke D, Decrock E, Van Haver V, De Bock M, Leybaert L. Calcium, a pivotal player in photodynamic therapy? Biochim Biophys Acta Mol Cell Res 2018;1865:1805-14. [PMID: 30076858 DOI: 10.1016/j.bbamcr.2018.07.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
286 Diogo P, F Faustino MA, P M S Neves MG, Palma PJ, P Baptista I, Gonçalves T, Santos JM. An Insight into Advanced Approaches for Photosensitizer Optimization in Endodontics-A Critical Review. J Funct Biomater 2019;10:E44. [PMID: 31575005 DOI: 10.3390/jfb10040044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
287 Nicolau Costa KM, Sato MR, Barbosa TLA, Rodrigues MGF, Medeiros ACD, Damasceno BPGL, Oshiro-Júnior JA. Curcumin-Loaded Micelles Dispersed in Ureasil-Polyether Materials for a Novel Sustained-Release Formulation. Pharmaceutics 2021;13:675. [PMID: 34066727 DOI: 10.3390/pharmaceutics13050675] [Reference Citation Analysis]
288 Yan S, Huang Q, Song X, Chen Z, Huang M, Zhang J. A series of photosensitizers with incremental positive electric charges for photodynamic antitumor therapy. RSC Adv 2019;9:24560-7. [DOI: 10.1039/c9ra03486b] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
289 Scholz M, Cao X, Gunn JR, Brůža P, Pogue B. pO 2 -weighted imaging in vivo by delayed fluorescence of intracellular Protoporphyrin IX. Opt Lett 2020;45:284. [DOI: 10.1364/ol.45.000284] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
290 Teplický T, Kalafutová A, Jerigová M, Čunderlíková B. Modulation of aminolevulinic acid-based photoinactivation efficacy by iron in vitro is cell type dependent. J Photochem Photobiol B 2020;213:112048. [PMID: 33142214 DOI: 10.1016/j.jphotobiol.2020.112048] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
291 Pöthig A, Casini A. Recent Developments of Supramolecular Metal-based Structures for Applications in Cancer Therapy and Imaging. Theranostics 2019;9:3150-69. [PMID: 31244947 DOI: 10.7150/thno.31828] [Cited by in Crossref: 59] [Cited by in F6Publishing: 36] [Article Influence: 19.7] [Reference Citation Analysis]
292 Ha SYY, Zhou Y, Fong W, Ng DKP. Multifunctional Molecular Therapeutic Agent for Targeted and Controlled Dual Chemo- and Photodynamic Therapy. J Med Chem 2020;63:8512-23. [DOI: 10.1021/acs.jmedchem.0c00893] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
293 Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020;153:109-36. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
294 Turubanova VD, Mishchenko TA, Balalaeva IV, Efimova I, Peskova NN, Klapshina LG, Lermontova SA, Bachert C, Krysko O, Vedunova MV, Krysko DV. Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death. Sci Rep 2021;11:7205. [PMID: 33785775 DOI: 10.1038/s41598-021-86354-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
295 Deyev SM, Lebedenko EN. Targeted Bifunctional Proteins and Hybrid Nanoconstructs for Cancer Diagnostics and Therapies. Mol Biol 2017;51:788-803. [DOI: 10.1134/s002689331706005x] [Cited by in Crossref: 10] [Article Influence: 2.0] [Reference Citation Analysis]
296 Thécua E, Ziane L, Grolez GP, Fagart A, Kumar A, Leroux B, Baert G, Deleporte P, Vermandel M, Vignion-Dewalle AS, Delhem N, Mordon S. A Warp-Knitted Light-Emitting Fabric-Based Device for In Vitro Photodynamic Therapy: Description, Characterization, and Application on Human Cancer Cell Lines. Cancers (Basel) 2021;13:4109. [PMID: 34439263 DOI: 10.3390/cancers13164109] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
297 Zhang C, Zhao Y, Li D, Liu J, Han H, He D, Tian X, Li S, Wu J, Tian Y. Aggregation-induced emission (AIE)-active molecules bearing singlet oxygen generation activities: the tunable singlet–triplet energy gap matters. Chem Commun 2019;55:1450-3. [DOI: 10.1039/c8cc09230c] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 7.7] [Reference Citation Analysis]
298 Schneider L, Kalt M, Larocca M, Babu V, Spingler B. Potent PBS/Polysorbate-Soluble Transplatin-Derived Porphyrin-Based Photosensitizers for Photodynamic Therapy. Inorg Chem 2021;60:9416-26. [PMID: 34115484 DOI: 10.1021/acs.inorgchem.1c00415] [Reference Citation Analysis]
299 Bu Y, Xu T, Zhu X, Zhang J, Wang L, Yu Z, Yu J, Wang A, Tian Y, Zhou H, Xie Y. A NIR-I light-responsive superoxide radical generator with cancer cell membrane targeting ability for enhanced imaging-guided photodynamic therapy. Chem Sci 2020;11:10279-86. [PMID: 34094292 DOI: 10.1039/d0sc03093g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
300 Kobayashi T, Miyazaki M, Sasaki N, Yamamuro S, Uchida E, Kawauchi D, Takahashi M, Otsuka Y, Kumagai K, Takeuchi S, Toyooka T, Otani N, Wada K, Narita Y, Yamaguchi H, Muragaki Y, Kawamata T, Mori K, Ichimura K, Tomiyama A. Enhanced Malignant Phenotypes of Glioblastoma Cells Surviving NPe6-Mediated Photodynamic Therapy are Regulated via ERK1/2 Activation. Cancers (Basel) 2020;12:E3641. [PMID: 33291680 DOI: 10.3390/cancers12123641] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
301 Gjuroski I, Girousi E, Meyer C, Hertig D, Stojkov D, Fux M, Schnidrig N, Bucher J, Pfister S, Sauser L, Simon HU, Vermathen P, Furrer J, Vermathen M. Evaluation of polyvinylpyrrolidone and block copolymer micelle encapsulation of serine chlorin e6 and chlorin e4 on their reactivity towards albumin and transferrin and their cell uptake. J Control Release 2019;316:150-67. [PMID: 31689463 DOI: 10.1016/j.jconrel.2019.10.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
302 Sandra F, Khaliq NU, Sunna A, Care A. Developing Protein-Based Nanoparticles as Versatile Delivery Systems for Cancer Therapy and Imaging. Nanomaterials (Basel) 2019;9:E1329. [PMID: 31527483 DOI: 10.3390/nano9091329] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
303 Cioloboc D, Kennedy C, Boice EN, Clark ER, Kurtz DM. Trojan Horse for Light-Triggered Bifurcated Production of Singlet Oxygen and Fenton-Reactive Iron within Cancer Cells. Biomacromolecules 2018;19:178-87. [DOI: 10.1021/acs.biomac.7b01433] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
304 Yan S, Tang D, Hong Z, Wang J, Yao H, Lu L, Yi H, Fu S, Zheng C, He G, Zou H, Hou X, He Q, Xiong L, Li Q, Deng X. CD133 peptide-conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells. Biomater Sci 2021;9:2020-31. [PMID: 33439161 DOI: 10.1039/d0bm01874k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
305 Fahmy SA, Azzazy HME, Schaefer J. Liposome Photosensitizer Formulations for Effective Cancer Photodynamic Therapy. Pharmaceutics 2021;13:1345. [PMID: 34575424 DOI: 10.3390/pharmaceutics13091345] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
306 Bergaggio E, Piva R. Wild-Type IDH Enzymes as Actionable Targets for Cancer Therapy. Cancers (Basel) 2019;11:E563. [PMID: 31010244 DOI: 10.3390/cancers11040563] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
307 Rapozzi V, D’este F, Xodo LE. Molecular pathways in cancer response to photodynamic therapy. J Porphyrins Phthalocyanines 2019;23:410-8. [DOI: 10.1142/s1088424619300064] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
308 Sorrin AJ, Kemal Ruhi M, Ferlic NA, Karimnia V, Polacheck WJ, Celli JP, Huang HC, Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem Photobiol 2020;96:232-59. [PMID: 31895481 DOI: 10.1111/php.13209] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
309 Sachsenmaier SM, Traub F, Cykowska A, Riester R, Wülker N, Walter C, Danalache M. Assessment of 5-Aminolevulinic Acid-Mediated Photodynamic Therapy on Bone Metastases: An in Vitro Study. Biology (Basel) 2021;10:1020. [PMID: 34681119 DOI: 10.3390/biology10101020] [Reference Citation Analysis]
310 Lin K, Ma Z, Li J, Tang M, Lindstrom A, Ramachandran M, Zhu S, Lin T, Zhang L, Li Y. Single Small Molecule‐Assembled Mitochondria Targeting Nanofibers for Enhanced Photodynamic Cancer Therapy In Vivo. Adv Funct Mater 2021;31:2008460. [DOI: 10.1002/adfm.202008460] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
311 Xu H, Dong L, Bin Z, Yansong H, Shaofeng L, Chang L, Chen C, Changli W. Supramolecular self-assembly of a hybrid 'hyalurosome' for targeted photothermal therapy in non-small cell lung cancer. Drug Deliv 2020;27:378-86. [PMID: 32098528 DOI: 10.1080/10717544.2020.1730521] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
312 Shen YJ, Cao J, Sun F, Cai XL, Li MM, Zheng NN, Qu CY, Zhang Y, Shen F, Zhou M, Chen YW, Xu LM. Effect of photodynamic therapy with (17R,18R)-2-(1-hexyloxyethyl)-2-devinyl chlorine E6 trisodium salt on pancreatic cancer cells in vitro and in vivoWorld J Gastroenterol 2018; 24(46): 5246-5258 [PMID: 30581273 DOI: 10.3748/wjg.v24.i46.5246] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
313 Mandim F, Graça VC, Calhelha RC, Machado ILF, Ferreira LFV, Ferreira ICFR, Santos PF. Synthesis, Photochemical and In Vitro Cytotoxic Evaluation of New Iodinated Aminosquaraines as Potential Sensitizers for Photodynamic Therapy. Molecules 2019;24:E863. [PMID: 30823489 DOI: 10.3390/molecules24050863] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
314 Fernandes SRG, Fernandes R, Sarmento B, Pereira PMR, Tomé JPC. Photoimmunoconjugates: novel synthetic strategies to target and treat cancer by photodynamic therapy. Org Biomol Chem 2019;17:2579-93. [PMID: 30648722 DOI: 10.1039/c8ob02902d] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 7.3] [Reference Citation Analysis]
315 Jenni S, Sour A. Molecular Theranostic Agents for Photodynamic Therapy (PDT) and Magnetic Resonance Imaging (MRI). Inorganics 2019;7:10. [DOI: 10.3390/inorganics7010010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
316 Lee W, Jeon M, Choi J, Oh C, Kim G, Jung S, Kim C, Ye SJ, Im HJ. Europium-Diethylenetriaminepentaacetic Acid Loaded Radioluminescence Liposome Nanoplatform for Effective Radioisotope-Mediated Photodynamic Therapy. ACS Nano 2020;14:13004-15. [PMID: 32820903 DOI: 10.1021/acsnano.0c04324] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
317 Morici P, Battisti A, Tortora G, Menciassi A, Checcucci G, Ghetti F, Sgarbossa A. The in vitro Photoinactivation of Helicobacter pylori by a Novel LED-Based Device. Front Microbiol 2020;11:283. [PMID: 32153551 DOI: 10.3389/fmicb.2020.00283] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
318 Kirakci K, Zelenka J, Rumlová M, Cvačka J, Ruml T, Lang K. Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: photodynamic anticancer and antibacterial activities. Biomater Sci 2019;7:1386-92. [PMID: 30656318 DOI: 10.1039/c8bm01564c] [Cited by in Crossref: 33] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
319 Scholz M, Croizat G, Pšenčík J, Dědic R, Nonell S, Wagnieres G. Understanding delayed fluorescence and triplet decays of Protoporphyrin IX under hypoxic conditions. Photochem Photobiol Sci 2021;20:843-57. [PMID: 34216374 DOI: 10.1007/s43630-021-00044-8] [Reference Citation Analysis]
320 Tsymbal SA, Moiseeva AA, Agadzhanian NA, Efimova SS, Markova AA, Guk DA, Krasnovskaya OO, Alpatova VM, Zaitsev AV, Shibaeva AV, Tatarskiy VV, Dukhinova MS, Ol'shevskaya VA, Ostroumova OS, Beloglazkina EK, Shtil AA. Copper-Containing Nanoparticles and Organic Complexes: Metal Reduction Triggers Rapid Cell Death via Oxidative Burst. Int J Mol Sci 2021;22:11065. [PMID: 34681725 DOI: 10.3390/ijms222011065] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
321 Zhuang Z, Dai J, Yu M, Li J, Shen P, Hu R, Lou X, Zhao Z, Tang BZ. Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chem Sci 2020;11:3405-17. [DOI: 10.1039/d0sc00785d] [Cited by in Crossref: 52] [Cited by in F6Publishing: 2] [Article Influence: 26.0] [Reference Citation Analysis]
322 Magalhães ÁF, Graça VC, Calhelha RC, Ferreira Machado IL, Ferreira LFV, Ferreira ICFR, Santos PF. Synthesis, photochemical and in vitro cytotoxic evaluation of benzoselenazole-based aminosquaraines. Photochem Photobiol Sci 2019;18:336-42. [PMID: 30310913 DOI: 10.1039/c8pp00201k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
323 Huis In 't Veld RV, Da Silva CG, Jager MJ, Cruz LJ, Ossendorp F. Combining Photodynamic Therapy with Immunostimulatory Nanoparticles Elicits Effective Anti-Tumor Immune Responses in Preclinical Murine Models. Pharmaceutics 2021;13:1470. [PMID: 34575546 DOI: 10.3390/pharmaceutics13091470] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
324 van Doeveren TEM, Bouwmans R, Wassenaar NPM, Schreuder WH, van Alphen MJA, van der Heijden F, Tan IB, Karakullukçu MB, van Veen RLP. On the Development of a Light Dosimetry Planning Tool for Photodynamic Therapy in Arbitrary Shaped Cavities: Initial Results. Photochem Photobiol 2020;96:405-16. [PMID: 31907934 DOI: 10.1111/php.13216] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
325 Novikova ED, Vorotnikov YA, Nikolaev NA, Tsygankova AR, Shestopalov MA, Efremova OA. Synergetic Effect of Mo 6 Clusters and Gold Nanoparticles on the Photophysical Properties of Both Components. Chem Eur J 2021;27:2818-25. [DOI: 10.1002/chem.202004618] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
326 Hua J, Wu P, Gan L, Zhang Z, He J, Zhong L, Zhao Y, Huang Y. Current Strategies for Tumor Photodynamic Therapy Combined With Immunotherapy. Front Oncol 2021;11:738323. [PMID: 34868932 DOI: 10.3389/fonc.2021.738323] [Reference Citation Analysis]
327 Dorst DN, Rijpkema M, Boss M, Walgreen B, Helsen MMA, Bos DL, Brom M, Klein C, Laverman P, van der Kraan PM, Gotthardt M, Koenders MI, Buitinga M. Targeted photodynamic therapy selectively kills activated fibroblasts in experimental arthritis. Rheumatology (Oxford) 2020;59:3952-60. [PMID: 32734285 DOI: 10.1093/rheumatology/keaa295] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]