BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: DeBlasi JM, DeNicola GM. Dissecting the Crosstalk between NRF2 Signaling and Metabolic Processes in Cancer. Cancers (Basel) 2020;12:E3023. [PMID: 33080927 DOI: 10.3390/cancers12103023] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhao L, Kang M, Liu X, Wang Z, Wang Y, Chen H, Liu W, Liu S, Li B, Li C, Chang A, Tang B. UBR7 inhibits HCC tumorigenesis by targeting Keap1/Nrf2/Bach1/HK2 and glycolysis. J Exp Clin Cancer Res 2022;41:330. [PMID: 36419136 DOI: 10.1186/s13046-022-02528-6] [Reference Citation Analysis]
2 Samec M, Mazurakova A, Lucansky V, Koklesova L, Pecova R, Pec M, Golubnitschaja O, Al-ishaq RK, Caprnda M, Gaspar L, Prosecky R, Gazdikova K, Adamek M, Büsselberg D, Kruzliak P, Kubatka P. Flavonoids Attentuate Cancer Metabolism by Modulating Redox State, lipid metabolism, and use of amino acids or ketone bodies.. [DOI: 10.21203/rs.3.rs-2273746/v1] [Reference Citation Analysis]
3 Atalay Ekiner S, Gęgotek A, Skrzydlewska E. The molecular activity of cannabidiol in the regulation of Nrf2 system interacting with NF-κB pathway under oxidative stress. Redox Biology 2022;57:102489. [DOI: 10.1016/j.redox.2022.102489] [Reference Citation Analysis]
4 Schaue D, Micewicz ED, Ratikan JA, Iwamoto KS, Vlashi E, Mcdonald JT, Mcbride WH. NRF2 Mediates Cellular Resistance to Transformation, Radiation, and Inflammation in Mice. Antioxidants 2022;11:1649. [DOI: 10.3390/antiox11091649] [Reference Citation Analysis]
5 Deblasi JM, Falzone A, Caldwell S, Kang YP, Prieto-farigua N, Prigge JR, Schmidt EE, Chio IIC, Karreth FA, Denicola GM. Distinct Nrf2 Signaling Thresholds Mediate Lung Tumor Initiation and Progression.. [DOI: 10.1101/2022.08.24.504986] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Semaniuk UV, Gospodaryov DV, Strilbytska OM, Kucharska AZ, Sokół-Łętowska A, Burdyliuk NI, Storey KB, Bayliak MM, Lushchak O. Chili pepper extends lifespan in a concentration-dependent manner and confers cold resistance on Drosophila melanogaster cohorts by influencing specific metabolic pathways. Food Funct 2022;13:8313-28. [PMID: 35842943 DOI: 10.1039/d2fo00930g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Rogerson C, Sciacovelli M, Maddalena LA, Valcarcel-jimenez L, Schmidt C, Yang M, Ivanova E, Kent J, Cheeseman D, Carroll JS, Kelsey G, Frezza C. FOXA2 controls the antioxidant response in FH-deficient cells independent of NRF2.. [DOI: 10.1101/2022.07.04.498412] [Reference Citation Analysis]
8 Yang X, Yang R, Zhang F. Role of Nrf2 in Parkinson’s Disease: Toward New Perspectives. Front Pharmacol 2022;13:919233. [DOI: 10.3389/fphar.2022.919233] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ala M. Sestrin2 in cancer: a foe or a friend? Biomark Res 2022;10. [DOI: 10.1186/s40364-022-00380-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Chanvorachote P, Hutamekalin P, Chunhacha P, Ei ZZ. Potential Natural Product–Derived Compounds for Lung Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_16] [Reference Citation Analysis]
11 Chanvorachote P, Hutamekalin P, Chunhacha P, Ei ZZ. Potential Natural Product Derived Compounds for Lung Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_16-1] [Reference Citation Analysis]
12 Dabbour NM, Salama AM, Donia T, Al-deeb RT, Abd Elghane AM, Badry KH, Loutfy SA. Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. Journal of Drug Delivery Science and Technology 2022;67:103022. [DOI: 10.1016/j.jddst.2021.103022] [Reference Citation Analysis]
13 Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. NRF2 Activation and Downstream Effects: Focus on Parkinson's Disease and Brain Angiotensin. Antioxidants (Basel) 2021;10:1649. [PMID: 34829520 DOI: 10.3390/antiox10111649] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
14 González-Bosch C, Boorman E, Zunszain PA, Mann GE. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol 2021;47:102165. [PMID: 34662811 DOI: 10.1016/j.redox.2021.102165] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 14.0] [Reference Citation Analysis]
15 Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 2021;81:3691-707. [PMID: 34547234 DOI: 10.1016/j.molcel.2021.08.018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 50] [Article Influence: 34.0] [Reference Citation Analysis]
16 Emanuele S, Celesia A, D'Anneo A, Lauricella M, Carlisi D, De Blasio A, Giuliano M. The Good and Bad of Nrf2: An Update in Cancer and New Perspectives in COVID-19. Int J Mol Sci 2021;22:7963. [PMID: 34360732 DOI: 10.3390/ijms22157963] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
17 Sánchez-Ortega M, Carrera AC, Garrido A. Role of NRF2 in Lung Cancer. Cells 2021;10:1879. [PMID: 34440648 DOI: 10.3390/cells10081879] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
18 McGarry DJ, Armstrong G, Castino G, Mason S, Clark W, Shaw R, McGarry L, Blyth K, Olson MF. MICAL1 regulates actin cytoskeleton organization, directional cell migration and the growth of human breast cancer cells as orthotopic xenograft tumours. Cancer Lett 2021;519:226-36. [PMID: 34314753 DOI: 10.1016/j.canlet.2021.07.039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
19 Liu T, Lv YF, Zhao JL, You QD, Jiang ZY. Regulation of Nrf2 by phosphorylation: Consequences for biological function and therapeutic implications. Free Radic Biol Med 2021;168:129-41. [PMID: 33794311 DOI: 10.1016/j.freeradbiomed.2021.03.034] [Cited by in Crossref: 28] [Cited by in F6Publishing: 35] [Article Influence: 28.0] [Reference Citation Analysis]
20 Kuo MT, Chen HHW, Feun LG, Savaraj N. Targeting the Proline-Glutamine-Asparagine-Arginine Metabolic Axis in Amino Acid Starvation Cancer Therapy. Pharmaceuticals (Basel) 2021;14:72. [PMID: 33477430 DOI: 10.3390/ph14010072] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
21 Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021;13:281. [PMID: 33466626 DOI: 10.3390/cancers13020281] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
22 Gunne S, Heinicke U, Parnham MJ, Laux V, Zacharowski K, von Knethen A. Nrf2-A Molecular Target for Sepsis Patients in Critical Care. Biomolecules 2020;10:E1688. [PMID: 33348637 DOI: 10.3390/biom10121688] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]