BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Böhner AMC, Koch D, Schmeel FC, Röhner F, Schoroth F, Sarria GR, Abramian AV, Baumert BG, Giordano FA, Schmeel LC. Objective Evaluation of Risk Factors for Radiation Dermatitis in Whole-Breast Irradiation Using the Spectrophotometric L*a*b Color-Space. Cancers (Basel) 2020;12:E2444. [PMID: 32872216 DOI: 10.3390/cancers12092444] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Alcorn SR, Corbin KS, Shumway DA. Integrating the Patient's Voice in Toxicity Reporting and Treatment Decisions for Breast Radiotherapy. Seminars in Radiation Oncology 2022;32:207-20. [DOI: 10.1016/j.semradonc.2022.01.010] [Reference Citation Analysis]
2 Dzul S, Ninia J, Jang H, Kim S, Dominello M. Predictors of Acute Radiation Dermatitis and Esophagitis in African American Patients Receiving Whole Breast Radiotherapy. Pract Radiat Oncol 2021:S1879-8500(21)00220-4. [PMID: 34710629 DOI: 10.1016/j.prro.2021.08.004] [Reference Citation Analysis]
3 Kim EH, Yoon JH, Park SB, Lee JY, Chung WK, Yoon SW. Comparative Efficacy of Jaungo, A Traditional Herbal Ointment, and the Water-in-Oil Type Non-Steroidal Moisturizer for Radiation-Induced Dermatitis in Patients With Breast Cancer: A Study Protocol for a Prospective, Randomized, Single-Blinded, Pilot Study. Front Pharmacol 2021;12:751812. [PMID: 34621177 DOI: 10.3389/fphar.2021.751812] [Reference Citation Analysis]
4 Sarria GR, Ramos ML, Palacios A, Del Castillo R, Castro F, Calvo A, Cotrina JM, Heredia A, Galarreta JA, Fuentes-Rivera P, Avalos A, Martinez DA, Colqui K, Ziegler G, Schmeel LC, Pinillos LV, Wenz F, Giordano FA, Sarria GJ, Sperk E. Long-Term Outcomes of an International Cooperative Study of Intraoperative Radiotherapy Upfront Boost With Low Energy X-Rays in Breast Cancer. Front Oncol 2022;12:850351. [PMID: 35371998 DOI: 10.3389/fonc.2022.850351] [Reference Citation Analysis]
5 Park Y, Choi S, Hong C, Cho M, Son J, Han M, Kim J, Kim H, Kim D, Kim J. A New Approach to Quantify and Grade Radiation Dermatitis Using Deep-Learning Segmentation in Skin Photographs. Clinical Oncology 2022. [DOI: 10.1016/j.clon.2022.07.001] [Reference Citation Analysis]