BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chatzipapas KP, Papadimitroulas P, Emfietzoglou D, Kalospyros SA, Hada M, Georgakilas AG, Kagadis GC. Ionizing Radiation and Complex DNA Damage: Quantifying the Radiobiological Damage Using Monte Carlo Simulations. Cancers (Basel) 2020;12:E799. [PMID: 32225023 DOI: 10.3390/cancers12040799] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Thompson SJ, Rooney A, Prise KM, Mcmahon SJ. Evaluating Iodine-125 DNA Damage Benchmarks of Monte Carlo DNA Damage Models. Cancers 2022;14:463. [DOI: 10.3390/cancers14030463] [Reference Citation Analysis]
2 Golshani M, Azadegan B, Mowlavi AA. Microdosimetry calculations and estimation of the relative biological effectiveness of the low-energy electrons released during Gd neutron capture reaction. Radiation Physics and Chemistry 2021;188:109585. [DOI: 10.1016/j.radphyschem.2021.109585] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Stainforth R, Schuemann J, McNamara AL, Wilkins RC, Chauhan V. Challenges in the quantification approach to a radiation relevant adverse outcome pathway for lung cancer. Int J Radiat Biol 2021;97:85-101. [PMID: 32909875 DOI: 10.1080/09553002.2020.1820096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Kyriakou I, Tremi I, Georgakilas AG, Emfietzoglou D. Microdosimetric investigation of the radiation quality of low-medium energy electrons using Geant4-DNA. Appl Radiat Isot 2021;172:109654. [PMID: 33676082 DOI: 10.1016/j.apradiso.2021.109654] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021;13:2997. [PMID: 34203882 DOI: 10.3390/cancers13122997] [Reference Citation Analysis]
6 Qi J, Geng C, Tang X, Tian F, Han Y, Liu H, Liu Y, Bortolussi S, Guan F. Effect of spatial distribution of boron and oxygen concentration on DNA damage induced from boron neutron capture therapy using Monte Carlo simulations. Int J Radiat Biol 2021;97:986-96. [PMID: 33970761 DOI: 10.1080/09553002.2021.1928785] [Reference Citation Analysis]
7 Sakata D, Suzuki M, Hirayama R, Abe Y, Muramatsu M, Sato S, Belov O, Kyriakou I, Emfietzoglou D, Guatelli S, Incerti S, Inaniwa T. Performance Evaluation for Repair of HSGc-C5 Carcinoma Cell Using Geant4-DNA. Cancers (Basel) 2021;13:6046. [PMID: 34885155 DOI: 10.3390/cancers13236046] [Reference Citation Analysis]
8 Friis I, Verkhovtsev AV, Solov'yov IA, Solov'yov AV. Lethal DNA damage caused by ion-induced shock waves in cells. Phys Rev E 2021;104:054408. [PMID: 34942780 DOI: 10.1103/PhysRevE.104.054408] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Lai Y, Jia X, Chi Y. Recent Developments on gMicroMC: Transport Simulations of Proton and Heavy Ions and Concurrent Transport of Radicals and DNA. Int J Mol Sci 2021;22:6615. [PMID: 34205577 DOI: 10.3390/ijms22126615] [Reference Citation Analysis]
10 Pantelias A, Zafiropoulos D, Cherubini R, Sarchiapone L, De Nadal V, Pantelias GE, Georgakilas AG, Terzoudi GI. Interphase Cytogenetic Analysis of G0 Lymphocytes Exposed to α-Particles, C-Ions, and Protons Reveals their Enhanced Effectiveness for Localized Chromosome Shattering-A Critical Risk for Chromothripsis. Cancers (Basel) 2020;12:E2336. [PMID: 32825012 DOI: 10.3390/cancers12092336] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Van den Heuvel F, Vella A, Fiorini F, Brooke M, Hill MA, Maughan T. Incorporating oxygenation levels in analytical DNA-damage models-quantifying the oxygen fixation mechanism. Phys Med Biol 2021;66. [PMID: 34130265 DOI: 10.1088/1361-6560/ac0b80] [Reference Citation Analysis]
12 Pfuhl T, Friedrich T, Scholz M. A double-strand-break model for the relative biological effectiveness of electrons based on ionization clustering. Med Phys 2022. [PMID: 35686448 DOI: 10.1002/mp.15796] [Reference Citation Analysis]
13 Georgakilas AG. Role of DNA Damage and Repair in Detrimental Effects of Ionizing Radiation. Radiation 2021;1:1-4. [DOI: 10.3390/radiation1010001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Chan C, Chen F, Hsueh K, Hsiao Y. The Effect of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for Cells Irradiated with Grenz Rays. Cancers 2022;14:1262. [DOI: 10.3390/cancers14051262] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Keta O, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin WG, Incerti S, Petrović I, Ristić Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. Int J Radiat Biol 2021;97:1229-40. [PMID: 34187289 DOI: 10.1080/09553002.2021.1948140] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Chatzipapas KP, Papadimitroulas P, Loudos G, Papanikolaou N, Kagadis GC. IDDRRA: A novel platform, based on Geant4-DNA to quantify DNA damage by ionizing radiation. Med Phys 2021;48:2624-36. [PMID: 33657650 DOI: 10.1002/mp.14817] [Reference Citation Analysis]
17 Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021;66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Kyriakou I, Sakata D, Tran HN, Perrot Y, Shin WG, Lampe N, Zein S, Bordage MC, Guatelli S, Villagrasa C, Emfietzoglou D, Incerti S. Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular and DNA Level. Cancers (Basel) 2021;14:35. [PMID: 35008196 DOI: 10.3390/cancers14010035] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
19 Koval NE, Koval P, Da Pieve F, Kohanoff J, Artacho E, Emfietzoglou D. Inelastic scattering of electrons in water from first principles: cross sections and inelastic mean free path for use in Monte Carlo track-structure simulations of biological damage. R Soc open sci 2022;9:212011. [DOI: 10.1098/rsos.212011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Vanderwaeren L, Dok R, Verstrepen K, Nuyts S. Clinical Progress in Proton Radiotherapy: Biological Unknowns. Cancers (Basel) 2021;13:604. [PMID: 33546432 DOI: 10.3390/cancers13040604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Wu J, Xie Y, Wang L, Wang Y. Monte Carlo simulations of energy deposition and DNA damage using TOPAS-nBio. Phys Med Biol 2020;65:225007. [DOI: 10.1088/1361-6560/abbb73] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Kolovi S, Fois G, Lanouar S, Chardon P, Miallier D, Rivrais G, Allain E, Baker L, Bailly C, Beauger A, Biron D, He Y, Holub G, Le Jeune A, Mallet C, Michel H, Montavon G, Schoefs B, Sergeant C, Maigne L, Breton V, Mackova A, Lorenz K, Vantomme A. Radiation exposure of microorganisms living in radioactive mineral springs. EPJ Web Conf 2022;261:04001. [DOI: 10.1051/epjconf/202226104001] [Reference Citation Analysis]
23 Nikitaki Z, Velalopoulou A, Zanni V, Tremi I, Havaki S, Kokkoris M, Gorgoulis VG, Koumenis C, Georgakilas AG. Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Rev Mol Med 2022;24:e15. [PMID: 35357290 DOI: 10.1017/erm.2022.6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]