BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yoon Y, Lee J, Ra M, Gwon H, Lee S, Kim MY, Yoo KC, Sul O, Kim CG, Kim WY, Park JG, Lee SJ, Lee YY, Choi HS, Lee SB. Continuous Separation of Circulating Tumor Cells from Whole Blood Using a Slanted Weir Microfluidic Device. Cancers (Basel) 2019;11:E200. [PMID: 30744156 DOI: 10.3390/cancers11020200] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Wang Y, Nunna BB, Talukder N, Etienne EE, Lee ES. Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms. Bioengineering (Basel) 2021;8:94. [PMID: 34356201 DOI: 10.3390/bioengineering8070094] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Lv N, Zhang L, Yang Z, Wang H, Yang N, Li H. Label-free biological sample detection and non-contact separation system based on microfluidic chip. Review of Scientific Instruments 2022;93:063104. [DOI: 10.1063/5.0086109] [Reference Citation Analysis]
3 Kim MY, Choi S, Lee SE, Kim JS, Son SH, Lim YS, Kim BJ, Ryu BY, Uversky VN, Lee YJ, Kim CG. Development of a MEL Cell-Derived Allograft Mouse Model for Cancer Research. Cancers (Basel) 2019;11:E1707. [PMID: 31683958 DOI: 10.3390/cancers11111707] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
4 Zhu S, Jiang F, Han Y, Xiang N, Ni Z. Microfluidics for label-free sorting of rare circulating tumor cells. Analyst 2020;145:7103-24. [DOI: 10.1039/d0an01148g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
5 Wu M, Huang Y, Zhou Y, Zhao H, Lan Y, Yu Z, Jia C, Cong H, Zhao J. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection. Small Methods 2022;:e2200226. [PMID: 35595707 DOI: 10.1002/smtd.202200226] [Reference Citation Analysis]
6 Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev. [DOI: 10.1007/s12551-022-00944-8] [Reference Citation Analysis]
7 Hakim M, Khorasheh F, Alemzadeh I, Vossoughi M. A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip. Anal Chim Acta 2021;1186:339115. [PMID: 34756251 DOI: 10.1016/j.aca.2021.339115] [Reference Citation Analysis]
8 Lee J, Sul O, Lee S. Enrichment of Circulating Tumor Cells from Whole Blood Using a Microfluidic Device for Sequential Physical and Magnetophoretic Separations. Micromachines 2020;11:481. [DOI: 10.3390/mi11050481] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Bhattacharjee R, Kumar R, Al-turjman F. A Novel Approach for Tuning of Fluidic Resistance in Deterministic Lateral Displacement Array for Enhanced Separation of Circulating Tumor Cells. Cogn Comput. [DOI: 10.1007/s12559-021-09904-y] [Reference Citation Analysis]
10 Zhou J, Mukherjee P, Gao H, Luan Q, Papautsky I. Label-free microfluidic sorting of microparticles. APL Bioeng 2019;3:041504. [PMID: 31832577 DOI: 10.1063/1.5120501] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
11 Korpan NN, Goltsev AN, Dronov OI, Bondarovych MO. Cryoimmunology: Opportunities and challenges in biomedical science and practice. Cryobiology 2021;100:1-11. [PMID: 33639110 DOI: 10.1016/j.cryobiol.2021.02.005] [Reference Citation Analysis]
12 Zhang X, Xu X, Wang J, Wang C, Yan Y, Wu A, Ren Y. Public-Health-Driven Microfluidic Technologies: From Separation to Detection. Micromachines (Basel) 2021;12:391. [PMID: 33918189 DOI: 10.3390/mi12040391] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Karimi S, Mehrdel P, Casals-Terré J, Farré-Llados J. Cost-effective microfabrication of sub-micron-depth channels by femto-laser anti-stiction texturing. Biofabrication 2020;12:025021. [PMID: 31891916 DOI: 10.1088/1758-5090/ab6665] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Song K, Li G, Zu X, Du Z, Liu L, Hu Z. The Fabrication and Application Mechanism of Microfluidic Systems for High Throughput Biomedical Screening: A Review. Micromachines (Basel) 2020;11:E297. [PMID: 32168977 DOI: 10.3390/mi11030297] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
15 Chan HT, Nagayama S, Chin YM, Otaki M, Hayashi R, Kiyotani K, Fukunaga Y, Ueno M, Nakamura Y, Low SK. Clinical significance of clonal hematopoiesis in the interpretation of blood liquid biopsy. Mol Oncol 2020;14:1719-30. [PMID: 32449983 DOI: 10.1002/1878-0261.12727] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
16 Kuan DH, Huang NT. Recent advancements in microfluidics that integrate electrical sensors for whole blood analysis. Anal Methods 2020;12:3318-32. [PMID: 32930218 DOI: 10.1039/d0ay00413h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
17 Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020;12:E1632. [PMID: 32575608 DOI: 10.3390/cancers12061632] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
18 Civelekoglu O, Frazier AB, Sarioglu AF. The Origins and the Current Applications of Microfluidics-Based Magnetic Cell Separation Technologies. Magnetochemistry 2022;8:10. [DOI: 10.3390/magnetochemistry8010010] [Reference Citation Analysis]
19 Narayana Iyengar S, Kumar T, Mårtensson G, Russom A. High resolution and rapid separation of bacteria from blood using elasto-inertial microfluidics. Electrophoresis 2021. [PMID: 34510466 DOI: 10.1002/elps.202100140] [Reference Citation Analysis]
20 Dincau B, Dressaire E, Sauret A. Pulsatile Flow in Microfluidic Systems. Small 2020;16:e1904032. [PMID: 31657131 DOI: 10.1002/smll.201904032] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
21 Abdulla A, Zhang T, Li S, Guo W, Warden AR, Xin Y, Maboyi N, Lou J, Xie H, Ding X. Integrated microfluidic single-cell immunoblotting chip enables high-throughput isolation, enrichment and direct protein analysis of circulating tumor cells. Microsyst Nanoeng 2022;8. [DOI: 10.1038/s41378-021-00342-2] [Reference Citation Analysis]
22 Li Y, Wang Y, Wan K, Wu M, Guo L, Liu X, Wei G. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review. Nanoscale 2021;13:4330-58. [PMID: 33620368 DOI: 10.1039/d0nr08892g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]