BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Elming PB, Sørensen BS, Oei AL, Franken NAP, Crezee J, Overgaard J, Horsman MR. Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers (Basel) 2019;11:E60. [PMID: 30634444 DOI: 10.3390/cancers11010060] [Cited by in Crossref: 87] [Cited by in F6Publishing: 90] [Article Influence: 21.8] [Reference Citation Analysis]
Number Citing Articles
1 Xiong Y, Wang W, Deng Q, Zhang Z, Wang Q, Yong Z, Sun C, Yang X, Li Z. Mild photothermal therapy boosts nanomedicine antitumor efficacy by disrupting DNA damage repair pathways and modulating tumor mechanics. Nano Today 2023;49:101767. [DOI: 10.1016/j.nantod.2023.101767] [Reference Citation Analysis]
2 Yang Z, Gao D, Zhao J, Yang G, Guo M, Wang Y, Ren X, Kim JS, Jin L, Tian Z, Zhang X. Thermal immuno-nanomedicine in cancer. Nat Rev Clin Oncol 2023;20:116-34. [PMID: 36604531 DOI: 10.1038/s41571-022-00717-y] [Reference Citation Analysis]
3 Zanoli M, Dobšíček Trefná H. The hot-to-cold spot quotient for SAR-based treatment planning in deep microwave hyperthermia. International Journal of Hyperthermia 2022;39:1421-1439. [DOI: 10.1080/02656736.2022.2136411] [Reference Citation Analysis]
4 Vaupel P, Piazena H. Strong correlation between specific heat capacity and water content in human tissues suggests preferred heat deposition in malignant tumors upon electromagnetic irradiation. International Journal of Hyperthermia 2022;39:987-97. [DOI: 10.1080/02656736.2022.2067596] [Reference Citation Analysis]
5 Etminan A, Dahaghin A, Emadiyanrazavi S, Salimibani M, Eivazzadeh-keihan R, Haghpanahi M, Maleki A. Simulation of heat transfer, mass transfer and tissue damage in magnetic nanoparticle hyperthermia with blood vessels. Journal of Thermal Biology 2022;110:103371. [DOI: 10.1016/j.jtherbio.2022.103371] [Reference Citation Analysis]
6 Drzał A, Delalande A, Dziurman G, Fournié M, Pichon C, Elas M. Increasing oxygen tension in tumor tissue using ultrasound sensitive O(2) microbubbles. Free Radic Biol Med 2022;193:567-78. [PMID: 36356713 DOI: 10.1016/j.freeradbiomed.2022.11.005] [Reference Citation Analysis]
7 Li B, Han Y, Liu Y, Yang F. Fine-tuned magnetic nanobubbles for magnetic hyperthermia treatment of glioma cells. Biointerphases 2022;17:061004. [DOI: 10.1116/6.0002110] [Reference Citation Analysis]
8 Cheng W, Xiao X, Liao Y, Cao Q, Wang C, Li X, Jia Y. Conducive target range of breast cancer: Hypoxic tumor microenvironment. Front Oncol 2022;12:978276. [DOI: 10.3389/fonc.2022.978276] [Reference Citation Analysis]
9 Sivasubramanian M, Lin L, Wang Y, Yang C, Lo L. Industrialization’s eye view on theranostic nanomedicine. Front Chem 2022;10:918715. [DOI: 10.3389/fchem.2022.918715] [Reference Citation Analysis]
10 Sengedorj A, Hader M, Frey B, Fietkau R, Ott OJ, Gaipl US, Rückert M. Interaction of Radiotherapy and Hyperthermia with the Immune System: a Brief Current Overview. Curr Stem Cell Rep. [DOI: 10.1007/s40778-022-00215-y] [Reference Citation Analysis]
11 Xue A, Fan S. Matrices and Affinity Ligands for Antibody Purification and Corresponding Applications in Radiotherapy. Biomolecules 2022;12:821. [PMID: 35740946 DOI: 10.3390/biom12060821] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Said Camilleri J, Farrugia L, Curto S, Rodrigues DB, Farina L, Caruana Dingli G, Bonello J, Farhat I, Sammut CV. Review of Thermal and Physiological Properties of Human Breast Tissue. Sensors (Basel) 2022;22:3894. [PMID: 35632302 DOI: 10.3390/s22103894] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Ribeiro TP, Moreira JA, Monterio FJ, Laranjeira MS. Nanomaterials in cancer: Reviewing the combination of hyperthermia and triggered chemotherapy. J Control Release 2022:S0168-3659(22)00240-1. [PMID: 35513211 DOI: 10.1016/j.jconrel.2022.04.045] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Bosque JJ, Calvo GF, Navarro MC. Modelling the effect of vascular status on tumour evolution and outcome after thermal therapy. Applied Mathematical Modelling 2022. [DOI: 10.1016/j.apm.2022.05.029] [Reference Citation Analysis]
15 Schouten D, van Os R, Westermann AM, Crezee H, van Tienhoven G, Kolff MW, Bins AD. A randomized phase-II study of reirradiation and hyperthermia versus reirradiation and hyperthermia plus chemotherapy for locally recurrent breast cancer in previously irradiated area. Acta Oncol 2022;61:441-8. [PMID: 35139725 DOI: 10.1080/0284186X.2022.2033315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Meyers LM, Krawic C, Luczak MW, Zhitkovich A. Vulnerability of HIF1α and HIF2α to damage by proteotoxic stressors. Toxicology and Applied Pharmacology 2022. [DOI: 10.1016/j.taap.2022.116041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Dewhirst MW, Oleson JR, Kirkpatrick J, Secomb TW. Accurate Three-Dimensional Thermal Dosimetry and Assessment of Physiologic Response Are Essential for Optimizing Thermoradiotherapy. Cancers 2022;14:1701. [DOI: 10.3390/cancers14071701] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
18 Androulakis I, Mestrom RMC, Christianen MEMC, Kolkman-deurloo IK, van Rhoon GC. A Novel Framework for the Optimization of Simultaneous ThermoBrachyTherapy. Cancers 2022;14:1425. [DOI: 10.3390/cancers14061425] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Schem B, Pfeffer F, Ott MA, Wiig JN, Sletteskog N, Frøystein T, Myklebust MP, Leh S, Dahl O, Mella O. Long-Term Outcome in a Phase II Study of Regional Hyperthermia Added to Preoperative Radiochemotherapy in Locally Advanced and Recurrent Rectal Adenocarcinomas. Cancers 2022;14:705. [DOI: 10.3390/cancers14030705] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 IJff M, Crezee J, Oei AL, Stalpers LJA, Westerveld H. The role of hyperthermia in the treatment of locally advanced cervical cancer: a comprehensive review. Int J Gynecol Cancer 2022:ijgc-2021-002473. [PMID: 35046082 DOI: 10.1136/ijgc-2021-002473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Rodrigues DB, Dobsicek-trefna H, Curto S, Winter L, Molitoris JK, Vrba J, Vrba D, Sumser K, Paulides MM. Radiofrequency and microwave hyperthermia in cancer treatment. Principles and Technologies for Electromagnetic Energy Based Therapies 2022. [DOI: 10.1016/b978-0-12-820594-5.00007-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Bakker A, Tello Valverde CP, van Tienhoven G, Kolff MW, Kok HP, Slotman BJ, Konings IRHM, Oei AL, Oldenburg HSA, Rutgers EJT, Rasch CRN, van den Bongard HJGD, Crezee H. Post-operative re-irradiation with hyperthermia in locoregional breast cancer recurrence: Temperature matters. Radiother Oncol 2021;167:149-57. [PMID: 34973278 DOI: 10.1016/j.radonc.2021.12.036] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Kazantseva NE, Smolkova IS, Babayan V, Vilčáková J, Smolka P, Saha P. Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review. Nanomaterials (Basel) 2021;11:3402. [PMID: 34947751 DOI: 10.3390/nano11123402] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
24 Hamed AS, Ali IA, Ghazaly ME, Hassan HE, Al-abyad M. Multifunctional radioactive ZnO/NiFe2O4 nanocomposite for theranostic applications. Eur Phys J Plus 2021;136:1118. [DOI: 10.1140/epjp/s13360-021-02066-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Vilaplana-Lopera N, Besh M, Moon EJ. Targeting Hypoxia: Revival of Old Remedies. Biomolecules 2021;11:1604. [PMID: 34827602 DOI: 10.3390/biom11111604] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Dufresne S, Richard C, Dieumegard A, Orfila L, Delpon G, Chiavassa S, Martin B, Rouvière L, Escoffre JM, Oujagir E, Denis de Senneville B, Bouakaz A, Rioux-Leclercq N, Potiron V, Rébillard A. Voluntary Wheel Running Does Not Enhance Radiotherapy Efficiency in a Preclinical Model of Prostate Cancer: The Importance of Physical Activity Modalities? Cancers (Basel) 2021;13:5402. [PMID: 34771565 DOI: 10.3390/cancers13215402] [Reference Citation Analysis]
27 Braude S, Varghese J. The oncoprotective fever hypothesis: Have antibiotics, antimalarials and antipyrectics contributed to the global rise in cancer over the past century? Med Hypotheses 2021;158:110720. [PMID: 34753009 DOI: 10.1016/j.mehy.2021.110720] [Reference Citation Analysis]
28 Shi X, Li Q, Zhang C, Pei H, Wang G, Zhou H, Fan L, Yang K, Jiang B, Wang F, Zhu R. Semiconducting polymer nano-radiopharmaceutical for combined radio-photothermal therapy of pancreatic tumor. J Nanobiotechnology 2021;19:337. [PMID: 34689758 DOI: 10.1186/s12951-021-01083-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 van de Kamp G, Heemskerk T, Kanaar R, Essers J. DNA Double Strand Break Repair Pathways in Response to Different Types of Ionizing Radiation. Front Genet 2021;12:738230. [PMID: 34659358 DOI: 10.3389/fgene.2021.738230] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
30 Maimaitiyiming Y, Wang QQ, Yang C, Ogra Y, Lou Y, Smith CA, Hussain L, Shao YM, Lin J, Liu J, Wang L, Zhu Y, Lou H, Huang Y, Li X, Chang KJ, Chen H, Li H, Huang Y, Tse E, Sun J, Bu N, Chiou SH, Zhang YF, Hua HY, Ma LY, Huang P, Ge MH, Cao FL, Cheng X, Sun H, Zhou J, Vasliou V, Xu P, Jin J, Bjorklund M, Zhu HH, Hsu CH, Naranmandura H. Hyperthermia Selectively Destabilizes Oncogenic Fusion Proteins. Blood Cancer Discov 2021;2:388-401. [PMID: 34661159 DOI: 10.1158/2643-3230.BCD-20-0188] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
31 Cai R, Xiang H, Yang D, Lin KT, Wu Y, Zhou R, Gu Z, Yan L, Zhao Y, Tan W. Plasmonic AuPt@CuS Heterostructure with Enhanced Synergistic Efficacy for Radiophotothermal Therapy. J Am Chem Soc 2021;143:16113-27. [PMID: 34582167 DOI: 10.1021/jacs.1c06652] [Cited by in Crossref: 23] [Cited by in F6Publishing: 30] [Article Influence: 11.5] [Reference Citation Analysis]
32 Datta A, West C, O'Connor JPB, Choudhury A, Hoskin P. Impact of hypoxia on cervical cancer outcomes. Int J Gynecol Cancer 2021;31:1459-70. [PMID: 34593564 DOI: 10.1136/ijgc-2021-002806] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Paulides MM, Rodrigues DB, Bellizzi GG, Sumser K, Curto S, Neufeld E, Montanaro H, Kok HP, Dobsicek Trefna H. ESHO benchmarks for computational modeling and optimization in hyperthermia therapy. Int J Hyperthermia 2021;38:1425-42. [PMID: 34581246 DOI: 10.1080/02656736.2021.1979254] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
34 Horsman MR, Sørensen BS, Busk M, Siemann DW. Therapeutic Modification of Hypoxia. Clin Oncol (R Coll Radiol) 2021;33:e492-509. [PMID: 34535359 DOI: 10.1016/j.clon.2021.08.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zanoli M, Trefná HD. Suitability of eigenvalue beam-forming for discrete multi-frequency hyperthermia treatment planning. Med Phys 2021;48:7410-26. [PMID: 34529281 DOI: 10.1002/mp.15220] [Reference Citation Analysis]
36 Karmacharya MB, Sultan LR, Hunt SJ, Sehgal CM. Hydralazine augmented ultrasound hyperthermia for the treatment of hepatocellular carcinoma. Sci Rep 2021;11:15553. [PMID: 34330960 DOI: 10.1038/s41598-021-94323-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Bienia A, Wiecheć-Cudak O, Murzyn AA, Krzykawska-Serda M. Photodynamic Therapy and Hyperthermia in Combination Treatment-Neglected Forces in the Fight against Cancer. Pharmaceutics 2021;13:1147. [PMID: 34452108 DOI: 10.3390/pharmaceutics13081147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Kim S, Lee JH, Cha J, You SH. Beneficial effects of modulated electro-hyperthermia during neoadjuvant treatment for locally advanced rectal cancer. Int J Hyperthermia 2021;38:144-51. [PMID: 33557636 DOI: 10.1080/02656736.2021.1877837] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
39 Hannon G, Tansi FL, Hilger I, Prina‐mello A. The Effects of Localized Heat on the Hallmarks of Cancer. Adv Therap 2021;4:2000267. [DOI: 10.1002/adtp.202000267] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Ashour ME, Allam W, Elsayed W, Atteya R, Elserafy M, Magdeldin S, Hassan MK, El-Khamisy SF. High Temperature Drives Topoisomerase Mediated Chromosomal Break Repair Pathway Choice. Cancers (Basel) 2021;13:2315. [PMID: 34065967 DOI: 10.3390/cancers13102315] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
41 IJff M, van Bochove GGW, Whitton D, Winiarczyk R, Honhoff C, Rodermond H, Crezee J, Stalpers LJA, Franken NAP, Oei AL. PARP1-Inhibition Sensitizes Cervical Cancer Cell Lines for Chemoradiation and Thermoradiation. Cancers (Basel) 2021;13:2092. [PMID: 33926008 DOI: 10.3390/cancers13092092] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
42 Zhang X, Bobeica M, Unger M, Bednarz A, Gerold B, Patties I, Melzer A, Landgraf L. Focused ultrasound radiosensitizes human cancer cells by enhancement of DNA damage. Strahlenther Onkol 2021;197:730-43. [PMID: 33885910 DOI: 10.1007/s00066-021-01774-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Joiner JB, Pylayeva-Gupta Y, Dayton PA. Focused Ultrasound for Immunomodulation of the Tumor Microenvironment. J Immunol 2020;205:2327-41. [PMID: 33077668 DOI: 10.4049/jimmunol.1901430] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
44 Mirzaghavami PS, Khoei S, Khoee S, Shirvalilou S, Mahdavi SR, Pirhajati Mahabadi V. Radio-sensitivity enhancement in HT29 cells through magnetic hyperthermia in combination with targeted nano-carrier of 5-Flourouracil. Mater Sci Eng C Mater Biol Appl 2021;124:112043. [PMID: 33947543 DOI: 10.1016/j.msec.2021.112043] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
45 Thiruthaneeswaran N, Bibby BAS, Yang L, Hoskin PJ, Bristow RG, Choudhury A, West C. Lost in application: Measuring hypoxia for radiotherapy optimisation. Eur J Cancer 2021;148:260-76. [PMID: 33756422 DOI: 10.1016/j.ejca.2021.01.039] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
46 Spałek MJ, Borkowska AM, Telejko M, Wągrodzki M, Niebyłowska D, Uzar A, Białobrzeska M, Rutkowski P. The Feasibility Study of Hypofractionated Radiotherapy with Regional Hyperthermia in Soft Tissue Sarcomas. Cancers (Basel) 2021;13:1332. [PMID: 33809547 DOI: 10.3390/cancers13061332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Crezee J, Franken NAP, Oei AL. Hyperthermia-Based Anti-Cancer Treatments. Cancers (Basel) 2021;13:1240. [PMID: 33808948 DOI: 10.3390/cancers13061240] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
48 Scutigliani EM, Liang Y, Crezee H, Kanaar R, Krawczyk PM. Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021;13:1243. [PMID: 33808973 DOI: 10.3390/cancers13061243] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
49 De Mendoza AM, Michlíková S, Berger J, Karschau J, Kunz-Schughart LA, McLeod DD. Mathematical model for the thermal enhancement of radiation response: thermodynamic approach. Sci Rep 2021;11:5503. [PMID: 33750833 DOI: 10.1038/s41598-021-84620-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
50 Bosque JJ, Calvo GF, Pérez-García VM, Navarro MC. The interplay of blood flow and temperature in regional hyperthermia: a mathematical approach. R Soc Open Sci 2021;8:201234. [PMID: 33614070 DOI: 10.1098/rsos.201234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Zanoli M, Trefná HD. Iterative time-reversal for multi-frequency hyperthermia. Phys Med Biol 2021;66:045027. [PMID: 33326945 DOI: 10.1088/1361-6560/abd41a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
52 Elming PB, Sørensen BS, Spejlborg H, Overgaard J, Horsman MR. Does the combination of hyperthermia with low LET (linear energy transfer) radiation induce anti-tumor effects equivalent to those seen with high LET radiation alone? Int J Hyperthermia 2021;38:105-10. [PMID: 33530766 DOI: 10.1080/02656736.2021.1876929] [Reference Citation Analysis]
53 Patharkar A, Raval N, Kalyane D, Tambe V, Anup N, More N, Kapusetti G, Kalia K, Tekade RK. Glucosamine-conjugated nanoseeds for chemo-magneto hyperthermia therapy of cancer. Journal of Drug Delivery Science and Technology 2021;61:102295. [DOI: 10.1016/j.jddst.2020.102295] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
54 Tang W, Yang Z, He L, Deng L, Fathi P, Zhu S, Li L, Shen B, Wang Z, Jacobson O, Song J, Zou J, Hu P, Wang M, Mu J, Cheng Y, Ma Y, Tang L, Fan W, Chen X. A hybrid semiconducting organosilica-based O2 nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy. Nat Commun 2021;12:523. [PMID: 33483518 DOI: 10.1038/s41467-020-20860-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 16.0] [Reference Citation Analysis]
55 Davydov AS, Belousov AV, Krusanov GA, Kolyvanova MA, Kovalev BB, Komlev AS, Krivoshapkin PV, Morozov VN, Zverev VI. Promising magnetic nanoradiosensitizers for combination of tumor hyperthermia and x-ray therapy: Theoretical calculation. Journal of Applied Physics 2021;129:033902. [DOI: 10.1063/5.0032843] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
56 Ashour AS, Guo Y, Mohamed WS. Clinical applications of thermal ablation. Thermal Ablation Therapy 2021. [DOI: 10.1016/b978-0-12-819544-4.00009-5] [Reference Citation Analysis]
57 Hu S, Zhang X, Unger M, Patties I, Melzer A, Landgraf L. Focused Ultrasound-Induced Cavitation Sensitizes Cancer Cells to Radiation Therapy and Hyperthermia. Cells 2020;9:E2595. [PMID: 33287379 DOI: 10.3390/cells9122595] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
58 Gu Q, Liu S, Saha Ray A, Florinas S, Christie RJ, Daniel M, Bieberich C, Ma R, Zhu L. Mild Whole-Body Hyperthermia-Induced Interstitial Fluid Pressure Reduction and Enhanced Nanoparticle Delivery to PC3 Tumors: In Vivo Studies and Micro-Computed Tomography Analyses. Journal of Thermal Science and Engineering Applications 2020;12. [DOI: 10.1115/1.4046520] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
59 Moradi S, Mokhtari-Dizaji M, Ghassemi F, Sheibani S, Asadi Amoli F. Increasing the efficiency of the retinoblastoma brachytherapy protocol with ultrasonic hyperthermia and gold nanoparticles: a rabbit model. Int J Radiat Biol 2020;96:1614-27. [PMID: 33074061 DOI: 10.1080/09553002.2020.1838657] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
60 Liu Z, Xiao K, Hou Z, Yan F, Chen Y, Cai L. Multifunctional Coating with Both Thermal Insulation and Antibacterial Properties Applied to Nickel-Titanium Alloy. Int J Nanomedicine 2020;15:7215-34. [PMID: 33061377 DOI: 10.2147/IJN.S266247] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
61 Liu T, Lu T, Yang Y, Chang S, Chen H, Lu I, Sabu A, Chiu H. New combination treatment from ROS-Induced sensitized radiotherapy with nanophototherapeutics to fully eradicate orthotopic breast cancer and inhibit metastasis. Biomaterials 2020;257:120229. [DOI: 10.1016/j.biomaterials.2020.120229] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
62 Brero F, Albino M, Antoccia A, Arosio P, Avolio M, Berardinelli F, Bettega D, Calzolari P, Ciocca M, Corti M, Facoetti A, Gallo S, Groppi F, Guerrini A, Innocenti C, Lenardi C, Locarno S, Manenti S, Marchesini R, Mariani M, Orsini F, Pignoli E, Sangregorio C, Veronese I, Lascialfari A. Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment. Nanomaterials (Basel) 2020;10:E1919. [PMID: 32993001 DOI: 10.3390/nano10101919] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
63 Gao F, Wang D, Zhang T, Ghosal A, Guo Z, Miao Y, Li G, Liu X, Lu J, Yu J, Fan H, Zhao L. Facile synthesis of Bi2S3-MoS2 heterogeneous nanoagent as dual functional radiosensitizer for triple negative breast cancer theranostics. Chemical Engineering Journal 2020;395:125032. [DOI: 10.1016/j.cej.2020.125032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
64 Krenacs T, Meggyeshazi N, Forika G, Kiss E, Hamar P, Szekely T, Vancsik T. Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. Int J Mol Sci 2020;21:E6270. [PMID: 32872532 DOI: 10.3390/ijms21176270] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
65 Korupalli C, Kalluru P, Nuthalapati K, Kuthala N, Thangudu S, Vankayala R. Recent Advances of Polyaniline-Based Biomaterials for Phototherapeutic Treatments of Tumors and Bacterial Infections. Bioengineering (Basel) 2020;7:E94. [PMID: 32823566 DOI: 10.3390/bioengineering7030094] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
66 Cheng X, He L, Xu J, Fang Q, Yang L, Xue Y, Wang X, Tang R. Oxygen-producing catalase-based prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy. Acta Biomater 2020;112:234-49. [PMID: 32502633 DOI: 10.1016/j.actbio.2020.05.035] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 14.0] [Reference Citation Analysis]
67 Nytko KJ, Thumser-Henner P, Russo G, Weyland MS, Rohrer Bley C. Role of HSP70 in response to (thermo)radiotherapy: analysis of gene expression in canine osteosarcoma cells by RNA-seq. Sci Rep 2020;10:12779. [PMID: 32728031 DOI: 10.1038/s41598-020-69619-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
68 Spałek MJ, Kozak K, Czarnecka AM, Bartnik E, Borkowska A, Rutkowski P. Neoadjuvant Treatment Options in Soft Tissue Sarcomas. Cancers (Basel) 2020;12:E2061. [PMID: 32722580 DOI: 10.3390/cancers12082061] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
69 Li Q, Hang L, Jiang W, Dou J, Xiao L, Tang X, Yao Y, Wang Y. Pre- and post-irradiation mild hyperthermia enabled by NIR-II for sensitizing radiotherapy. Biomaterials 2020;257:120235. [PMID: 32736260 DOI: 10.1016/j.biomaterials.2020.120235] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
70 Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020;9:E1651. [PMID: 32660072 DOI: 10.3390/cells9071651] [Cited by in Crossref: 42] [Cited by in F6Publishing: 49] [Article Influence: 14.0] [Reference Citation Analysis]
71 Singh V, Johansson P, Torchinsky D, Lin YL, Öz R, Ebenstein Y, Hammarsten O, Westerlund F. Quantifying DNA damage induced by ionizing radiation and hyperthermia using single DNA molecule imaging. Transl Oncol 2020;13:100822. [PMID: 32652469 DOI: 10.1016/j.tranon.2020.100822] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
72 Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv Drug Deliv Rev 2020;163-164:65-83. [PMID: 32603814 DOI: 10.1016/j.addr.2020.06.025] [Cited by in Crossref: 113] [Cited by in F6Publishing: 122] [Article Influence: 37.7] [Reference Citation Analysis]
73 Datta NR, Kok HP, Crezee H, Gaipl US, Bodis S. Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Front Oncol 2020;10:819. [PMID: 32596144 DOI: 10.3389/fonc.2020.00819] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
74 Crezee J, Oei AL, Franken NAP, Stalpers LJA, Kok HP. Response: Commentary: The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front Oncol 2020;10:528. [PMID: 32351897 DOI: 10.3389/fonc.2020.00528] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
75 Hader M, Savcigil DP, Rosin A, Ponfick P, Gekle S, Wadepohl M, Bekeschus S, Fietkau R, Frey B, Schlücker E, Gaipl US. Differences of the Immune Phenotype of Breast Cancer Cells after Ex Vivo Hyperthermia by Warm-Water or Microwave Radiation in a Closed-Loop System Alone or in Combination with Radiotherapy. Cancers (Basel) 2020;12:E1082. [PMID: 32349284 DOI: 10.3390/cancers12051082] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
76 Sharma A, Rudek MA, Korangath P, Bunz F, Ivkov R. For HIPEC, synergistic effects of hyperthermia and doxorubicin are optimal when simultaneously combined. Int J Hyperthermia 2020;37:346-8. [PMID: 32270728 DOI: 10.1080/02656736.2020.1750714] [Reference Citation Analysis]
77 Datta NR, Bodis S. Hyperthermia with photon radiotherapy is thermoradiobiologically analogous to neutrons for tumors without enhanced normal tissue toxicity. Int J Hyperthermia 2019;36:1073-8. [PMID: 31709846 DOI: 10.1080/02656736.2019.1679895] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
78 van Rhoon GC, Franckena M, Ten Hagen TLM. A moderate thermal dose is sufficient for effective free and TSL based thermochemotherapy. Adv Drug Deliv Rev 2020;163-164:145-56. [PMID: 32247801 DOI: 10.1016/j.addr.2020.03.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
79 Paulides MM, Dobsicek Trefna H, Curto S, Rodrigues DB. Recent technological advancements in radiofrequency- andmicrowave-mediated hyperthermia for enhancing drug delivery. Adv Drug Deliv Rev 2020;163-164:3-18. [PMID: 32229271 DOI: 10.1016/j.addr.2020.03.004] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 14.0] [Reference Citation Analysis]
80 Notter M, Thomsen AR, Nitsche M, Hermann RM, Wolff HA, Habl G, Münch K, Grosu AL, Vaupel P. Combined wIRA-Hyperthermia and Hypofractionated Re-Irradiation in the Treatment of Locally Recurrent Breast Cancer: Evaluation of Therapeutic Outcome Based on a Novel Size Classification. Cancers (Basel) 2020;12:E606. [PMID: 32155740 DOI: 10.3390/cancers12030606] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
81 Arnold CR, Mangesius J, Skvortsova II, Ganswindt U. The Role of Cancer Stem Cells in Radiation Resistance. Front Oncol. 2020;10:164. [PMID: 32154167 DOI: 10.3389/fonc.2020.00164] [Cited by in Crossref: 78] [Cited by in F6Publishing: 84] [Article Influence: 26.0] [Reference Citation Analysis]
82 Oei AL, Kok HP, Oei SB, Horsman MR, Stalpers LJA, Franken NAP, Crezee J. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv Drug Deliv Rev 2020;163-164:84-97. [PMID: 31982475 DOI: 10.1016/j.addr.2020.01.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 15.0] [Reference Citation Analysis]
83 Tydings C, Sharma KV, Kim A, Yarmolenko PS. Emerging hyperthermia applications for pediatric oncology. Adv Drug Deliv Rev 2020;163-164:157-67. [PMID: 33203538 DOI: 10.1016/j.addr.2020.10.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
84 Düzgün MB, Theofilatos K, Georgakilas AG, Pavlopoulou A. A Bioinformatic Approach for the Identification of Molecular Determinants of Resistance/Sensitivity to Cancer Thermotherapy. Oxid Med Cell Longev 2019;2019:4606219. [PMID: 31814876 DOI: 10.1155/2019/4606219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
85 Kim W, Lee S, Seo D, Kim D, Kim K, Kim E, Kang J, Seong KM, Youn H, Youn B. Cellular Stress Responses in Radiotherapy. Cells 2019;8:E1105. [PMID: 31540530 DOI: 10.3390/cells8091105] [Cited by in Crossref: 112] [Cited by in F6Publishing: 124] [Article Influence: 28.0] [Reference Citation Analysis]
86 Forster JC, Marcu LG, Bezak E. Approaches to combat hypoxia in cancer therapy and the potential for in silico models in their evaluation. Phys Med 2019;64:145-56. [PMID: 31515013 DOI: 10.1016/j.ejmp.2019.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
87 Minnaar CA, Kotzen JA, Ayeni OA, Naidoo T, Tunmer M, Sharma V, Vangu MD, Baeyens A. The effect of modulated electro-hyperthermia on local disease control in HIV-positive and -negative cervical cancer women in South Africa: Early results from a phase III randomised controlled trial. PLoS One 2019;14:e0217894. [PMID: 31216321 DOI: 10.1371/journal.pone.0217894] [Cited by in Crossref: 35] [Cited by in F6Publishing: 45] [Article Influence: 8.8] [Reference Citation Analysis]
88 Datta NR, Bodis S. Hyperthermia with radiotherapy reduces tumour alpha/beta: Insights from trials of thermoradiotherapy vs radiotherapy alone. Radiother Oncol 2019;138:1-8. [PMID: 31132683 DOI: 10.1016/j.radonc.2019.05.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
89 Crezee H, Kok HP, Oei AL, Franken NAP, Stalpers LJA. The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front Oncol 2019;9:412. [PMID: 31165046 DOI: 10.3389/fonc.2019.00412] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
90 Bahar E, Kim JY, Yoon H. Chemotherapy Resistance Explained through Endoplasmic Reticulum Stress-Dependent Signaling. Cancers (Basel) 2019;11:E338. [PMID: 30857233 DOI: 10.3390/cancers11030338] [Cited by in Crossref: 42] [Cited by in F6Publishing: 47] [Article Influence: 10.5] [Reference Citation Analysis]