BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Janaszewska A, Lazniewska J, Trzepiński P, Marcinkowska M, Klajnert-Maculewicz B. Cytotoxicity of Dendrimers. Biomolecules 2019;9:E330. [PMID: 31374911 DOI: 10.3390/biom9080330] [Cited by in Crossref: 84] [Cited by in F6Publishing: 60] [Article Influence: 28.0] [Reference Citation Analysis]
Number Citing Articles
1 Mignani S, Shi X, Rodrigues J, Tomas H, Karpus A, Majoral J. First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. European Journal of Medicinal Chemistry 2021;219:113456. [DOI: 10.1016/j.ejmech.2021.113456] [Reference Citation Analysis]
2 Granier F, Marie S, Al Amir Dache Z, Aityaya J, Mazard T, Garrelly L, Prévostel C. Assessment of Dendrigrafts of Poly- l -lysine Cytotoxicity and Cell Penetration in Cancer Cells. ACS Appl Polym Mater 2022;4:908-19. [DOI: 10.1021/acsapm.1c01354] [Reference Citation Analysis]
3 Leiro V, Spencer AP, Magalhães N, Pêgo AP. Versatile fully biodegradable dendritic nanotherapeutics. Biomaterials 2022;281:121356. [DOI: 10.1016/j.biomaterials.2021.121356] [Reference Citation Analysis]
4 Oliveira IM, Gonçalves C, Oliveira EP, Simón-vázquez R, da Silva Morais A, González-fernández Á, Reis RL, Oliveira JM. PAMAM dendrimers functionalised with an anti-TNF α antibody and chondroitin sulphate for treatment of rheumatoid arthritis. Materials Science and Engineering: C 2021;121:111845. [DOI: 10.1016/j.msec.2020.111845] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Pukale S, Pandya A, Patravale V. Synthesis, characterization and topical application of novel bifunctional peptide metallodendrimer. Journal of Drug Delivery Science and Technology 2021;66:102925. [DOI: 10.1016/j.jddst.2021.102925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Alhaj-suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114482] [Reference Citation Analysis]
7 Müllerová M, Maciel D, Nunes N, Wrobel D, Stofik M, Červenková Št Astná L, Krupková A, Cuřínová P, Nováková K, Božík M, Malý M, Malý J, Rodrigues J, Strašák T. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer-Doxorubicin Complexes. Biomacromolecules 2021. [PMID: 34928129 DOI: 10.1021/acs.biomac.1c01264] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Mignani S, Shi X, Guidolin K, Zheng G, Karpus A, Majoral JP. Clinical diagonal translation of nanoparticles: Case studies in dendrimer nanomedicine. J Control Release 2021;337:356-70. [PMID: 34311026 DOI: 10.1016/j.jconrel.2021.07.036] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020;31:2060-71. [PMID: 32786368 DOI: 10.1021/acs.bioconjchem.0c00395] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 13.5] [Reference Citation Analysis]
10 Zoulikha M, He W. Targeted Drug Delivery for Chronic Lymphocytic Leukemia. Pharm Res. [DOI: 10.1007/s11095-022-03214-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Sorokina SA, Shifrina ZB. Dendrimers as Antiamyloid Agents. Pharmaceutics 2022;14:760. [DOI: 10.3390/pharmaceutics14040760] [Reference Citation Analysis]
12 Douloudi M, Nikoli E, Katsika T, Vardavoulias M, Arkas M. Dendritic Polymers as Promising Additives for the Manufacturing of Hybrid Organoceramic Nanocomposites with Ameliorated Properties Suitable for an Extensive Diversity of Applications. Nanomaterials (Basel) 2020;11:E19. [PMID: 33374206 DOI: 10.3390/nano11010019] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Royo-rubio E, Martín-cañadilla V, Rusnati M, Milanesi M, Lozano-cruz T, Gómez R, Jiménez JL, Muñoz-fernández MÁ. Prevention of Herpesviridae Infections by Cationic PEGylated Carbosilane Dendrimers. Pharmaceutics 2022;14:536. [DOI: 10.3390/pharmaceutics14030536] [Reference Citation Analysis]
14 Haegebaert RM, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. European Journal of Pharmaceutics and Biopharmaceutics 2022;172:16-30. [DOI: 10.1016/j.ejpb.2022.01.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BioTech 2022;11:6. [DOI: 10.3390/biotech11010006] [Reference Citation Analysis]
16 Mekuria SL, Li J, Song C, Gao Y, Ouyang Z, Shen M, Shi X. Facile Formation of PAMAM Dendrimer Nanoclusters for Enhanced Gene Delivery and Cancer Gene Therapy. ACS Appl Bio Mater 2021;4:7168-75. [PMID: 35006948 DOI: 10.1021/acsabm.1c00743] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Flores-Mejía R, Fragoso-Vázquez MJ, Pérez-Blas LG, Parra-Barrera A, Hernández-Castro SS, Estrada-Pérez AR, Rodrígues J, Lara-Padilla E, Ortiz-Morales A, Correa-Basurto J. Chemical characterization (LC-MS-ESI), cytotoxic activity and intracellular localization of PAMAM G4 in leukemia cells. Sci Rep 2021;11:8210. [PMID: 33859258 DOI: 10.1038/s41598-021-87560-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Czarnik-kwaśniak J, Kwaśniak K, Tutaj K, Filiks I, Uram Ł, Stompor M, Wołowiec S. Glucoheptoamidated polyamidoamine PAMAM G3 dendrimer as a vehicle for succinate linked doxorubicin; enhanced toxicity of DOX against grade IV glioblastoma U-118 MG cells. Journal of Drug Delivery Science and Technology 2020;55:101424. [DOI: 10.1016/j.jddst.2019.101424] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
19 Zhao L, Li Y, Yang Z, Pei D, Shi T, Zhang Y, Li F. Preparation of glycopolymer micelle for application in drug and gene delivery. Materials Letters 2020;264:127238. [DOI: 10.1016/j.matlet.2019.127238] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Jatczak-Pawlik I, Gorzkiewicz M, Studzian M, Zinke R, Appelhans D, Klajnert-Maculewicz B, Pułaski Ł. Nanoparticles for Directed Immunomodulation: Mannose-Functionalized Glycodendrimers Induce Interleukin-8 in Myeloid Cell Lines. Biomacromolecules 2021;22:3396-407. [PMID: 34286584 DOI: 10.1021/acs.biomac.1c00476] [Reference Citation Analysis]
21 Nishimoto Y, Nagashima S, Nakajima K, Ohira T, Sato T, Izawa T, Yamate J, Higashikawa K, Kuge Y, Ogawa M, Kojima C. Carboxyl-, sulfonyl-, and phosphate-terminal dendrimers as a nanoplatform with lymph node targeting. Int J Pharm 2020;576:119021. [PMID: 31917298 DOI: 10.1016/j.ijpharm.2020.119021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
22 Camacho CS, Urgellés M, Tomás H, Lahoz F, Rodrigues J. New insights into the blue intrinsic fluorescence of oxidized PAMAM dendrimers considering their use as bionanomaterials. J Mater Chem B 2020;8:10314-26. [DOI: 10.1039/d0tb01871f] [Reference Citation Analysis]
23 Uram Ł, Markowicz J, Misiorek M, Filipowicz-Rachwał A, Wołowiec S, Wałajtys-Rode E. Celecoxib substituted biotinylated poly(amidoamine) G3 dendrimer as potential treatment for temozolomide resistant glioma therapy and anti-nematode agent. Eur J Pharm Sci 2020;152:105439. [PMID: 32615261 DOI: 10.1016/j.ejps.2020.105439] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Arasi MB, Pedini F, Valentini S, Felli N, Felicetti F. Advances in Natural or Synthetic Nanoparticles for Metastatic Melanoma Therapy and Diagnosis. Cancers (Basel) 2020;12:E2893. [PMID: 33050185 DOI: 10.3390/cancers12102893] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 McFadden M, Singh SK, Oprea-Ilies G, Singh R. Nano-Based Drug Delivery and Targeting to Overcome Drug Resistance of Ovarian Cancers. Cancers (Basel) 2021;13:5480. [PMID: 34771642 DOI: 10.3390/cancers13215480] [Reference Citation Analysis]
26 Hueso M, Mallén A, Suñé-Pou M, Aran JM, Suñé-Negre JM, Navarro E. ncRNAs in Therapeutics: Challenges and Limitations in Nucleic Acid-Based Drug Delivery. Int J Mol Sci 2021;22:11596. [PMID: 34769025 DOI: 10.3390/ijms222111596] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Mignani S, Shi X, Ceña V, Shcharbin D, Bryszewska M, Majoral JP. In vivo therapeutic applications of phosphorus dendrimers: state of the art. Drug Discov Today 2021;26:677-89. [PMID: 33285297 DOI: 10.1016/j.drudis.2020.11.034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
28 Fana M, Gallien J, Srinageshwar B, Dunbar GL, Rossignol J. PAMAM Dendrimer Nanomolecules Utilized as Drug Delivery Systems for Potential Treatment of Glioblastoma: A Systematic Review. Int J Nanomedicine 2020;15:2789-808. [PMID: 32368055 DOI: 10.2147/IJN.S243155] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
29 Mela I, Kaminski CF. Nano-vehicles give new lease of life to existing antimicrobials. Emerg Top Life Sci 2020;4:555-66. [PMID: 33258900 DOI: 10.1042/ETLS20200153] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Flores-mejía R, Fragoso-vázquez MJ, Pérez-blas LG, Parra-barrera A, Hernández-castro SS, Estrada-pérez AR, Rodrígues J, Lara-padilla E, Ortiz-morales A, Correa-basurto J. Chemical characterization (LC–MS–ESI), cytotoxic activity and intracellular localization of PAMAM G4 in leukemia cells. Sci Rep 2021;11. [DOI: 10.1038/s41598-021-87560-w] [Reference Citation Analysis]
31 Camacho CS, Urgellés M, Tomás H, Lahoz F, Rodrigues J. New insights into the blue intrinsic fluorescence of oxidized PAMAM dendrimers considering their use as bionanomaterials. J Mater Chem B 2020;8:10314-26. [PMID: 33146227 DOI: 10.1039/d0tb01871f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
32 Martins I, Tomás H, Lahoz F, Rodrigues J. Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery. Biomacromolecules 2021;22:2436-50. [DOI: 10.1021/acs.biomac.1c00232] [Reference Citation Analysis]
33 Ciekot J, Psurski M, Jurec K, Boratyński J. Hydroxyethylcellulose as a methotrexate carrier in anticancer therapy. Invest New Drugs 2021;39:15-23. [PMID: 32643014 DOI: 10.1007/s10637-020-00972-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Khalili M, Keshvari H, Imani R, Sohi AN, Esmaeili E, Tajabadi M. Study of osteogenic potential of electrospun PCL incorporated by dendrimerized superparamagnetic nanoparticles as a bone tissue engineering scaffold. Polymers for Advanced Techs 2022;33:782-94. [DOI: 10.1002/pat.5555] [Reference Citation Analysis]
35 Vedadghavami A, Hakim B, He T, Bajpayee AG. Cationic peptide carriers enable long-term delivery of insulin-like growth factor-1 to suppress osteoarthritis-induced matrix degradation. Arthritis Res Ther 2022;24:172. [PMID: 35858920 DOI: 10.1186/s13075-022-02855-1] [Reference Citation Analysis]
36 Yan L, Dang X, Yang M, Zhang M, Rui L, Han W, Li Y. One-pot synthesis of PAMAM-grafted hyperbranched cellulose towards enhanced thermal stability and antibacterial activity. Process Biochemistry 2022;121:78-86. [DOI: 10.1016/j.procbio.2022.06.032] [Reference Citation Analysis]
37 Xiang S, Hammer B, Kremer K, Müllen K, Weil T. Engineering surface amphiphilicity of polymer nanostructures. Progress in Polymer Science 2022;124:101489. [DOI: 10.1016/j.progpolymsci.2021.101489] [Reference Citation Analysis]
38 Lu YC, Hsu HF, Lai LL. Unconventional Approaches to Prepare Triazine-Based Liquid Crystal Dendrimers. Nanomaterials (Basel) 2021;11:2112. [PMID: 34443941 DOI: 10.3390/nano11082112] [Reference Citation Analysis]
39 Sayed N, Tambe P, Kumar P, Jadhav S, Paknikar KM, Gajbhiye V. miRNA transfection via poly(amidoamine)-based delivery vector prevents hypoxia/reperfusion-induced cardiomyocyte apoptosis. Nanomedicine (Lond) 2020;15:163-81. [PMID: 31799897 DOI: 10.2217/nnm-2019-0363] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
40 Rabiee N, Ahmadvand S, Ahmadi S, Fatahi Y, Dinarvand R, Bagherzadeh M, Rabiee M, Tahriri M, Tayebi L, Hamblin MR. Carbosilane dendrimers: Drug and gene delivery applications. Journal of Drug Delivery Science and Technology 2020;59:101879. [DOI: 10.1016/j.jddst.2020.101879] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
41 Juan A, del Mar Noblejas-lópez M, Arenas-moreira M, Alonso-moreno C, Ocaña A. Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles. Front Cell Dev Biol 2022;9:805336. [DOI: 10.3389/fcell.2021.805336] [Reference Citation Analysis]
42 Heredero-Bermejo I, Gómez-Casanova N, Quintana S, Soliveri J, de la Mata FJ, Pérez-Serrano J, Sánchez-Nieves J, Copa-Patiño JL. In Vitro Activity of Carbosilane Cationic Dendritic Molecules on Prevention and Treatment of Candida Albicans Biofilms. Pharmaceutics 2020;12:E918. [PMID: 32992733 DOI: 10.3390/pharmaceutics12100918] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Maharjan RS, Singh AV, Hanif J, Rosenkranz D, Haidar R, Shelar A, Singh SP, Dey A, Patil R, Zamboni P, Laux P, Luch A. Investigation of the Associations between a Nanomaterial's Microrheology and Toxicology. ACS Omega 2022;7:13985-97. [PMID: 35559161 DOI: 10.1021/acsomega.2c00472] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
44 Xiang S, Wagner J, Lückerath T, Müllen K, Ng DYW, Hedrich J, Weil T. Reversing Aβ Fibrillation and Inhibiting Aβ Primary Neuronal Cell Toxicity Using Amphiphilic Polyphenylene Dendrons. Adv Healthc Mater 2022;11:e2101854. [PMID: 34748685 DOI: 10.1002/adhm.202101854] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Cruz A, Mota P, Ramos C, Pires RF, Mendes C, Silva JP, Nunes SC, Bonifácio VDB, Serpa J. Polyurea Dendrimer Folate-Targeted Nanodelivery of l-Buthionine sulfoximine as a Tool to Tackle Ovarian Cancer Chemoresistance. Antioxidants (Basel) 2020;9:E133. [PMID: 32028640 DOI: 10.3390/antiox9020133] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
46 Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022;7:292-323. [PMID: 34466734 DOI: 10.1016/j.bioactmat.2021.05.038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
47 Johnson KK, Koshy P, Yang J, Sorrell CC. Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. Adv Funct Mater 2021;31:2104199. [DOI: 10.1002/adfm.202104199] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
48 Smith RJ, Fabiani T, Wang S, Ramesh S, Khan S, Santiso E, Silva FLB, Gorman C, Menegatti S. Exploring the physicochemical and morphological properties of peptide‐hybridized dendrimers ( DendriPeps ) and their aggregates. Journal of Polymer Science 2020;58:2234-47. [DOI: 10.1002/pol.20200277] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Barani M, Bilal M, Sabir F, Rahdar A, Kyzas GZ. Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci 2021;266:118914. [PMID: 33340527 DOI: 10.1016/j.lfs.2020.118914] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
50 Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res 2021;82:100901. [PMID: 32891866 DOI: 10.1016/j.preteyeres.2020.100901] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
51 Baecker D, Kapp T, Schumacher P, Gust R, Kircher B. Cell death-inducing properties of selected dendrimers against different breast cancer and leukemia cell lines. Arch Pharm (Weinheim) 2020;353:e2000209. [PMID: 32780524 DOI: 10.1002/ardp.202000209] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Martin-Moreno A, Ceña-Diez R, Serramía MJ, Jiménez JL, Gómez-Ramírez R, Muñoz-Fernández M. Safety of G2-S16 Polyanionic Carbosilane Dendrimer as Possible HIV-1 Vaginal Microbicide. Int J Mol Sci 2022;23:2565. [PMID: 35269708 DOI: 10.3390/ijms23052565] [Reference Citation Analysis]
53 Karimi S, Namazi H. Fe3O4@PEG-coated dendrimer modified graphene oxide nanocomposite as a pH-sensitive drug carrier for targeted delivery of doxorubicin. Journal of Alloys and Compounds 2021;879:160426. [DOI: 10.1016/j.jallcom.2021.160426] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
54 Veliskova M, Zvarik M, Suty S, Jacko J, Mydla P, Cechova K, Dzubinska D, Morvova M, Ionov M, Terehova M, Majoral J, Bryszewska M, Waczulikova I. In Vitro Interactions of Amphiphilic Phosphorous Dendrons with Liposomes and Exosomes—Implications for Blood Viscosity Changes. Pharmaceutics 2022;14:1596. [DOI: 10.3390/pharmaceutics14081596] [Reference Citation Analysis]
55 Chowdhury S, Toth I, Stephenson RJ. Dendrimers in vaccine delivery: Recent progress and advances. Biomaterials 2022;280:121303. [PMID: 34871877 DOI: 10.1016/j.biomaterials.2021.121303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, Subramaniyan V, Kokare C, Lum PT, Begum MY, Mani S, Meenakshi DU, Sathasivam KV, Fuloria NK. Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. Int J Nanomedicine 2021;16:7891-941. [PMID: 34880614 DOI: 10.2147/IJN.S328135] [Reference Citation Analysis]
57 Malinga-Drozd M, Uram Ł, Wróbel K, Wołowiec S. Chiral Recognition of Homochiral Poly (amidoamine) Dendrimers Substituted with R- and S-Glycidol by Keratinocyte (HaCaT) and Squamous Carcinoma (SCC-15) Cells In Vitro. Polymers (Basel) 2021;13:1049. [PMID: 33801610 DOI: 10.3390/polym13071049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Abdelhafiz FM, Mohamed DE, Khattab A, Mohamed AS, Soliman EA, Kassem TM. Designing of quaternized hyperbranched polyamidoamines dendrimers: Surface activity, pharmaceutical efficacy, and safety approach. Journal of Drug Delivery Science and Technology 2022;67:102929. [DOI: 10.1016/j.jddst.2021.102929] [Reference Citation Analysis]
59 Deng B, Mcnelles SA, Da-ré G, Marando VM, Ros S, Stöver HDH, Adronov A. Neopentyl Esters as Robust Linkers for Introducing Functionality to Bis-MPA Dendrimers. Macromolecules 2022;55:270-5. [DOI: 10.1021/acs.macromol.1c01974] [Reference Citation Analysis]
60 Kakavoulia MA, Karakota M, Kaloyianni M, Halevas E, Sagnou M, Galliou PA, Koliakos G. The cytotoxicity effect of a bis-MPA-based dendron, a bis-MPA-PEG dendrimer and a magnetite nanoparticle on stimulated and non-stimulated human blood lymphocytes. Toxicol In Vitro 2022;:105377. [PMID: 35550412 DOI: 10.1016/j.tiv.2022.105377] [Reference Citation Analysis]
61 Carone M, Moreno S, Cangiotti M, Ottaviani MF, Wang P, Carloni R, Appelhans D. DOTA Glycodendrimers as Cu(II) Complexing Agents and Their Dynamic Interaction Characteristics toward Liposomes. Langmuir 2020;36:12816-29. [PMID: 32993292 DOI: 10.1021/acs.langmuir.0c01776] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
62 Rodríguez-prieto T, Fattori A, Camejo C, Javier de la Mata F, Cano J, Francesca Ottaviani M, Gómez R. Synthesis of imidazolium-terminated carbosilane dendrimers and dendrons and study of their interactions with a cell membrane model. European Polymer Journal 2020;133:109748. [DOI: 10.1016/j.eurpolymj.2020.109748] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
63 Patel KD, Silva LB, Park Y, Shakouri T, Keskin-erdogan Z, Sawadkar P, Cho KJ, Knowles JC, Chau DY, Kim H. Recent advances in drug delivery systems for glaucoma treatment. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100178] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. Adv Therap 2021;4:2000076. [DOI: 10.1002/adtp.202000076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
65 Gauro R, Nandave M, Jain VK, Jain K. Advances in dendrimer-mediated targeted drug delivery to the brain. J Nanopart Res 2021;23. [DOI: 10.1007/s11051-021-05175-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
66 Sousa CFV, Fernandez-megia E, Borges J, Mano JF. Supramolecular dendrimer-containing layer-by-layer nanoassemblies for bioapplications: current status and future prospects. Polym Chem 2021;12:5902-30. [DOI: 10.1039/d1py00988e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
67 Patra S, Singh M, Wasnik K, Pareek D, Gupta PS, Mukherjee S, Paik P. Polymeric Nanoparticle Based Diagnosis and Nanomedicine for Treatment and Development of Vaccines for Cerebral Malaria: A Review on Recent Advancement. ACS Appl Bio Mater 2021;4:7342-65. [PMID: 35006689 DOI: 10.1021/acsabm.1c00635] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Haider M, Zaki KZ, El Hamshary MR, Hussain Z, Orive G, Ibrahim HO. Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer. Journal of Advanced Research 2021. [DOI: 10.1016/j.jare.2021.11.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
69 Karimi S, Namazi H. A photoluminescent folic acid-derived carbon dot functionalized magnetic dendrimer as a pH-responsive carrier for targeted doxorubicin delivery. New J Chem 2021;45:6397-405. [DOI: 10.1039/d0nj06261h] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
70 Jebbawi R, Fruchon S, Turrin CO, Blanzat M, Poupot R. Supramolecular and Macromolecular Matrix Nanocarriers for Drug Delivery in Inflammation-Associated Skin Diseases. Pharmaceutics 2020;12:E1224. [PMID: 33348690 DOI: 10.3390/pharmaceutics12121224] [Reference Citation Analysis]
71 Ciepluch K, Biehl R, Bryszewska M, Arabski M. Poly(propylene imine) dendrimers can bind to PEGylated albumin at PEG and albumin surface: Biophysical examination of a PEGylated platform to transport cationic dendritic nanoparticles. Biopolymers 2020;111:e23386. [PMID: 32544981 DOI: 10.1002/bip.23386] [Reference Citation Analysis]
72 Pradhan D, Biswasroy P, Sahu A, Sahu DK, Ghosh G, Rath G. Recent Advances in Herbal Nanomedicines for Cancer Treatment. Curr Mol Pharmacol 2021;14:292-305. [PMID: 32448111 DOI: 10.2174/1874467213666200525010624] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
73 Joseph C, Daniels A, Singh S, Singh M. Histidine-Tagged Folate-Targeted Gold Nanoparticles for Enhanced Transgene Expression in Breast Cancer Cells In Vitro. Pharmaceutics 2021;14:53. [PMID: 35056949 DOI: 10.3390/pharmaceutics14010053] [Reference Citation Analysis]
74 Czarnomysy R, Muszyńska A, Rok J, Rzepka Z, Bielawski K. Mechanism of Anticancer Action of Novel Imidazole Platinum(II) Complex Conjugated with G2 PAMAM-OH Dendrimer in Breast Cancer Cells. Int J Mol Sci 2021;22:5581. [PMID: 34070401 DOI: 10.3390/ijms22115581] [Reference Citation Analysis]
75 Rana MM. Polymer-based nano-therapies to combat COVID-19 related respiratory injury: progress, prospects, and challenges. J Biomater Sci Polym Ed 2021;32:1219-49. [PMID: 33787467 DOI: 10.1080/09205063.2021.1909412] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
76 Uram Ł, Filipowicz-Rachwał A, Misiorek M, Winiarz A, Wałajtys-Rode E, Wołowiec S. Synthesis and Different Effects of Biotinylated PAMAM G3 Dendrimer Substituted with Nimesulide in Human Normal Fibroblasts and Squamous Carcinoma Cells. Biomolecules 2019;9:E437. [PMID: 31480608 DOI: 10.3390/biom9090437] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
77 Rafeeq H, Hussain A, Ambreen A, Zill-e-huma, Waqas M, Bilal M, Iqbal HMN. Functionalized nanoparticles and their environmental remediation potential: a review. J Nanostruct Chem. [DOI: 10.1007/s40097-021-00468-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
78 Ybarra DE, Calienni MN, Ramirez LFB, Frias ETA, Lillo C, Alonso SDV, Montanari J, Alvira FC. Vismodegib in PAMAM-dendrimers for potential theragnosis in skin cancer. OpenNano 2022;7:100053. [DOI: 10.1016/j.onano.2022.100053] [Reference Citation Analysis]
79 Chaudhary KR, Puri V, Singh A, Singh C. A review on recent advances in nanomedicines for the treatment of pulmonary tuberculosis. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2021.103069] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
80 Kelly L, Olson LB, Rempel RE, Everitt JI, Levine D, Nair SK, Davis ME, Sullenger BA. β-Cyclodextrin-containing polymer treatment of cutaneous lupus and influenza improves outcomes. Mol Ther 2021:S1525-0016(21)00497-4. [PMID: 34628051 DOI: 10.1016/j.ymthe.2021.10.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
81 Pishavar E, Oroojalian F, Salmasi Z, Hashemi E, Hashemi M. Recent advances of dendrimer in targeted delivery of drugs and genes to stem cells as cellular vehicles. Biotechnol Prog 2021;37:e3174. [PMID: 33987965 DOI: 10.1002/btpr.3174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Crintea A, Dutu AG, Samasca G, Florian IA, Lupan I, Craciun AM. The Nanosystems Involved in Treating Lung Cancer. Life (Basel) 2021;11:682. [PMID: 34357054 DOI: 10.3390/life11070682] [Reference Citation Analysis]
83 Elsayed NA, Boyer TM, Burd I. Fetal Neuroprotective Strategies: Therapeutic Agents and Their Underlying Synaptic Pathways. Front Synaptic Neurosci 2021;13:680899. [PMID: 34248595 DOI: 10.3389/fnsyn.2021.680899] [Reference Citation Analysis]
84 Ahlawat J, Guillama Barroso G, Masoudi Asil S, Alvarado M, Armendariz I, Bernal J, Carabaza X, Chavez S, Cruz P, Escalante V, Estorga S, Fernandez D, Lozano C, Marrufo M, Ahmad N, Negrete S, Olvera K, Parada X, Portillo B, Ramirez A, Ramos R, Rodriguez V, Rojas P, Romero J, Suarez D, Urueta G, Viel S, Narayan M. Nanocarriers as Potential Drug Delivery Candidates for Overcoming the Blood-Brain Barrier: Challenges and Possibilities. ACS Omega 2020;5:12583-95. [PMID: 32548442 DOI: 10.1021/acsomega.0c01592] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 23.0] [Reference Citation Analysis]
85 Markowicz J, Wołowiec S, Rode W, Uram Ł. Synthesis and Properties of α-Mangostin and Vadimezan Conjugates with Glucoheptoamidated and Biotinylated 3rd Generation Poly(amidoamine) Dendrimer, and Conjugation Effect on Their Anticancer and Anti-Nematode Activities. Pharmaceutics 2022;14:606. [DOI: 10.3390/pharmaceutics14030606] [Reference Citation Analysis]
86 Rajagopal P, Jayandharan GR, Krishnan UM. Evaluation of the Anticancer Activity of pH-Sensitive Polyketal Nanoparticles for Acute Myeloid Leukemia. Mol Pharm 2021;18:2015-31. [PMID: 33780253 DOI: 10.1021/acs.molpharmaceut.0c01243] [Reference Citation Analysis]
87 Hassan EM, Zou S. Novel nanocarriers for silencing anti-phagocytosis CD47 marker in acute myeloid leukemia cells. Colloids Surf B Biointerfaces 2022;217:112609. [PMID: 35667200 DOI: 10.1016/j.colsurfb.2022.112609] [Reference Citation Analysis]
88 Fernandes G, Pandey A, Kulkarni S, Mutalik SP, Nikam AN, Seetharam RN, Kulkarni SS, Mutalik S. Supramolecular dendrimers based novel platforms for effective oral delivery of therapeutic moieties. Journal of Drug Delivery Science and Technology 2021;64:102647. [DOI: 10.1016/j.jddst.2021.102647] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
89 Fan Y, Namata F, Erlandsson J, Zhang Y, Wågberg L, Malkoch M. Self-Assembled Polyester Dendrimer/Cellulose Nanofibril Hydrogels with Extraordinary Antibacterial Activity. Pharmaceutics 2020;12:E1139. [PMID: 33255607 DOI: 10.3390/pharmaceutics12121139] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
90 Than A, Zan P, Chen P. Transdermal theranostics. View 2020;1. [DOI: 10.1002/viw2.21] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
91 Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. Biomed Res Int 2021;2021:9322282. [PMID: 34746313 DOI: 10.1155/2021/9322282] [Reference Citation Analysis]
92 Chivere VT, Kondiah PPD, Choonara YE, Pillay V. Nanotechnology-Based Biopolymeric Oral Delivery Platforms for Advanced Cancer Treatment. Cancers (Basel) 2020;12:E522. [PMID: 32102429 DOI: 10.3390/cancers12020522] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
93 Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-fernández Á, Ceña V, Majoral J. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjugate Chem 2020;31:2060-71. [DOI: 10.1021/acs.bioconjchem.0c00395] [Reference Citation Analysis]
94 Dąbkowska M, Ulańczyk Z, Łuczkowska K, Rogińska D, Sobuś A, Wasilewska M, Olszewska M, Jakubowska K, Machaliński B. The role of the electrokinetic charge of neurotrophis-based nanocarriers: protein distribution, toxicity, and oxidative stress in in vitro setting. J Nanobiotechnology 2021;19:258. [PMID: 34454520 DOI: 10.1186/s12951-021-00984-4] [Reference Citation Analysis]
95 Mignani S, Shi X, Rodrigues J, Tomas H, Karpus A, Majoral JP. First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. Eur J Med Chem 2021;219:113456. [PMID: 33878563 DOI: 10.1016/j.ejmech.2021.113456] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
96 Zloh M, Barata TS. An update on the use of molecular modeling in dendrimers design for biomedical applications: are we using its full potential? Expert Opin Drug Discov 2020;15:1015-24. [PMID: 32452244 DOI: 10.1080/17460441.2020.1769597] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
97 Folliero V, Zannella C, Chianese A, Stelitano D, Ambrosino A, De Filippis A, Galdiero M, Franci G, Galdiero M. Application of Dendrimers for Treating Parasitic Diseases. Pharmaceutics 2021;13:343. [PMID: 33808016 DOI: 10.3390/pharmaceutics13030343] [Reference Citation Analysis]
98 Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. Nanoscale Adv 2020;2:5046-89. [DOI: 10.1039/d0na00478b] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
99 Hegde N, Juvale K, Prabhakar B. Synthesis and In Vitro Evaluation of Inherent Properties of L-Glutamic Acid Based Dendritic Lipopeptide Oligomers. J Pharm Innov. [DOI: 10.1007/s12247-020-09493-7] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
100 Campora S, Ghersi G. Recent developments and applications of smart nanoparticles in biomedicine. Nanotechnology Reviews 2022;11:2595-631. [DOI: 10.1515/ntrev-2022-0148] [Reference Citation Analysis]
101 Moorthy H, Govindaraju T. Dendrimer Architectonics to Treat Cancer and Neurodegenerative Diseases with Implications in Theranostics and Personalized Medicine. ACS Appl Bio Mater 2021;4:1115-39. [PMID: 35014470 DOI: 10.1021/acsabm.0c01319] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
102 Suty S, Oravczova V, Garaiova Z, Subjakova V, Ionov M, Shcharbin D, Simonikova Z, Bartek P, Zvarik M, Shi X, Mignani S, Majoral JP, Bryszewska M, Hianik T, Waczulikova I. Blood Compatibility of Amphiphilic Phosphorous Dendrons-Prospective Drug Nanocarriers. Biomedicines 2021;9:1672. [PMID: 34829901 DOI: 10.3390/biomedicines9111672] [Reference Citation Analysis]
103 Anastasio AT, Paniagua A, Diamond C, Ferlauto HR, Fernandez-Moure JS. Nanomaterial Nitric Oxide Delivery in Traumatic Orthopedic Regenerative Medicine. Front Bioeng Biotechnol 2020;8:592008. [PMID: 33537289 DOI: 10.3389/fbioe.2020.592008] [Reference Citation Analysis]
104 Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020;25:E3982. [PMID: 32882920 DOI: 10.3390/molecules25173982] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 11.5] [Reference Citation Analysis]
105 Palan F, Chatterjee B. Dendrimers in the context of targeting central nervous system disorders. Journal of Drug Delivery Science and Technology 2022;73:103474. [DOI: 10.1016/j.jddst.2022.103474] [Reference Citation Analysis]
106 Palombarini F, Masciarelli S, Incocciati A, Liccardo F, Di Fabio E, Iazzetti A, Fabrizi G, Fazi F, Macone A, Bonamore A, Boffi A. Self-assembling ferritin-dendrimer nanoparticles for targeted delivery of nucleic acids to myeloid leukemia cells. J Nanobiotechnology 2021;19:172. [PMID: 34107976 DOI: 10.1186/s12951-021-00921-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
107 Rana A, Saleh TA. An investigation of polymer-modified activated carbon as a potential shale inhibitor for water-based drilling muds. Journal of Petroleum Science and Engineering 2022;216:110763. [DOI: 10.1016/j.petrol.2022.110763] [Reference Citation Analysis]
108 Arango D, Bittar A, Esmeral NP, Ocasión C, Muñoz-Camargo C, Cruz JC, Reyes LH, Bloch NI. Understanding the Potential of Genome Editing in Parkinson's Disease. Int J Mol Sci 2021;22:9241. [PMID: 34502143 DOI: 10.3390/ijms22179241] [Reference Citation Analysis]
109 Dos Santos Ramos MA, Dos Santos KC, da Silva PB, de Toledo LG, Marena GD, Rodero CF, de Camargo BAF, Fortunato GC, Bauab TM, Chorilli M. Nanotechnological strategies for systemic microbial infections treatment: A review. Int J Pharm 2020;589:119780. [PMID: 32860856 DOI: 10.1016/j.ijpharm.2020.119780] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
110 Kolodziejczyk AM, Sokolowska P, Zimon A, Grala M, Rosowski M, Siatkowska M, Komorowski P, Walkowiak B. Dysfunction of endothelial cells exposed to nanomaterials assessed by atomic force spectroscopy. Micron 2021;145:103062. [PMID: 33770641 DOI: 10.1016/j.micron.2021.103062] [Reference Citation Analysis]
111 Müllerová M, Maciel D, Nunes N, Wrobel D, Stofik M, Červenková Št́astná L, Krupková A, Cuřínová P, Nováková K, Božík M, Malý M, Malý J, Rodrigues J, Strašák T. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer–Doxorubicin Complexes. Biomacromolecules 2022;23:276-90. [DOI: 10.1021/acs.biomac.1c01264] [Reference Citation Analysis]
112 Ziemba B, Borowiec M, Franiak-Pietryga I. There and back again: a dendrimer's tale. Drug Chem Toxicol 2021;:1-16. [PMID: 33910437 DOI: 10.1080/01480545.2021.1915327] [Reference Citation Analysis]
113 Trosheva KS, Sorokina SA, Efimova АА, Semenyuk PI, Berkovich AK, Yaroslavov AA, Shifrina ZB. Interaction of multicomponent anionic liposomes with cationic pyridylphenylene dendrimer: Does the complex behavior depend on the liposome composition? Biochim Biophys Acta Biomembr 2021;1863:183761. [PMID: 34480877 DOI: 10.1016/j.bbamem.2021.183761] [Reference Citation Analysis]
114 Lai WCB, Chen X, Ho MKY, Xia J, Leung SSY. Bacteriophage-derived endolysins to target gram-negative bacteria. Int J Pharm 2020;589:119833. [PMID: 32877733 DOI: 10.1016/j.ijpharm.2020.119833] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
115 Rodríguez-Izquierdo I, Sepúlveda-Crespo D, Lasso JM, Resino S, Muñoz-Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1774. [PMID: 35018739 DOI: 10.1002/wnan.1774] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Krathumkhet N, Sabrina, Imae T, Krafft MP. Nitric Oxide Gas in Carbon Nanohorn/Fluorinated Dendrimer/Fluorinated Poly(ethylene glycol)-Based Hierarchical Nanocomposites as Therapeutic Nanocarriers. ACS Appl Bio Mater 2021;4:2591-600. [DOI: 10.1021/acsabm.0c01577] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
117 Lu YC, Chien CY, Hsu HF, Lai LL. Adsorbing Volatile Organic Chemicals by Soluble Triazine-Based Dendrimers under Ambient Conditions with the Adsorption Capacity of Pyridine up to 946.2 mg/g. Molecules 2021;26:4862. [PMID: 34443449 DOI: 10.3390/molecules26164862] [Reference Citation Analysis]
118 Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021;26:5976. [PMID: 34641519 DOI: 10.3390/molecules26195976] [Reference Citation Analysis]
119 Czerniecka-Kubicka A, Tutka P, Pyda M, Walczak M, Uram Ł, Misiorek M, Chmiel E, Wołowiec S. Stepwise Glucoheptoamidation of Poly(Amidoamine) Dendrimer G3 to Tune Physicochemical Properties of the Potential Drug Carrier: In Vitro Tests for Cytisine Conjugates. Pharmaceutics 2020;12:E473. [PMID: 32456066 DOI: 10.3390/pharmaceutics12050473] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
120 Pradhan D, Biswasroy P, Goyal A, Ghosh G, Rath G. Recent Advancement in Nanotechnology-Based Drug Delivery System Against Viral Infections. AAPS PharmSciTech 2021;22:47. [PMID: 33447909 DOI: 10.1208/s12249-020-01908-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
121 Liu Z, Ji X, He D, Zhang R, Liu Q, Xin T. Nanoscale Drug Delivery Systems in Glioblastoma. Nanoscale Res Lett 2022;17:27. [PMID: 35171358 DOI: 10.1186/s11671-022-03668-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
122 Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. Materials (Basel) 2021;14:6812. [PMID: 34832213 DOI: 10.3390/ma14226812] [Reference Citation Analysis]
123 Li X, Naeem A, Xiao S, Hu L, Zhang J, Zheng Q. Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022;14:1292. [PMID: 35745863 DOI: 10.3390/pharmaceutics14061292] [Reference Citation Analysis]
124 Martins I, Tomás H, Lahoz F, Rodrigues J. Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery. Biomacromolecules 2021;22:2436-50. [PMID: 34009977 DOI: 10.1021/acs.biomac.1c00232] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
125 Ganjalinia A, Akbari S, Solouk A. Tuning poly (L-lactic acid) scaffolds with poly(amidoamine) and poly(propylene imine) dendrimers: surface chemistry, biodegradation and biocompatibility. Journal of Macromolecular Science, Part A 2021;58:433-47. [DOI: 10.1080/10601325.2021.1880935] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
126 Kołodziejczyk AM, Grala MM, Zimon A, Białkowska K, Walkowiak B, Komorowski P. Investigation of HUVEC response to exposure to PAMAM dendrimers – changes in cell elasticity and vesicles release. Nanotoxicology. [DOI: 10.1080/17435390.2022.2097138] [Reference Citation Analysis]