BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Abdelsalam SS, Korashy HM, Zeidan A, Agouni A. The Role of Protein Tyrosine Phosphatase (PTP)-1B in cardiovascular disease and its Interplay with insulin resistance. Biomolecules. 2019;9:286. [PMID: 31319588 DOI: 10.3390/biom9070286] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, Harding IC, Ebong EE, Cameron SJ, Stewart AG, Weng J. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev 2021;73:924-67. [PMID: 34088867 DOI: 10.1124/pharmrev.120.000096] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
2 Almasi F, Mohammadipanah F. Prominent and emerging anti-diabetic molecular targets. J Drug Target 2021;29:491-506. [PMID: 33336602 DOI: 10.1080/1061186X.2020.1859517] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Muniyappa R, Chen H, Montagnani M, Sherman A, Quon MJ. Endothelial dysfunction due to selective insulin resistance in vascular endothelium: insights from mechanistic modeling. Am J Physiol Endocrinol Metab 2020;319:E629-46. [PMID: 32776829 DOI: 10.1152/ajpendo.00247.2020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
4 Li C, Qian T, He R, Wan C, Liu Y, Yu H. Endoplasmic Reticulum-Plasma Membrane Contact Sites: Regulators, Mechanisms, and Physiological Functions. Front Cell Dev Biol 2021;9:627700. [PMID: 33614657 DOI: 10.3389/fcell.2021.627700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Yang Y, Tian JY, Ye F, Xiao Z. Identification of natural products as selective PTP1B inhibitors via virtual screening. Bioorg Chem 2020;98:103706. [PMID: 32199302 DOI: 10.1016/j.bioorg.2020.103706] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
6 Bai Y, Liu J, Yang L, Zhong L. New insights into serum/extracellular thioredoxin in regulating hepatic insulin receptor activation. Biochim Biophys Acta Gen Subj 2020;1864:129630. [PMID: 32376199 DOI: 10.1016/j.bbagen.2020.129630] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Proença C, Ribeiro D, Freitas M, Carvalho F, Fernandes E. A comprehensive review on the antidiabetic activity of flavonoids targeting PTP1B and DPP-4: a structure-activity relationship analysis. Crit Rev Food Sci Nutr 2021;:1-57. [PMID: 33554619 DOI: 10.1080/10408398.2021.1872483] [Reference Citation Analysis]
8 Tong T, Liu X, Yu C. Extraction and Nano-Sized Delivery Systems for Phlorotannins to Improve Its Bioavailability and Bioactivity. Mar Drugs 2021;19:625. [PMID: 34822496 DOI: 10.3390/md19110625] [Reference Citation Analysis]
9 Fu F, Liu C, Shi R, Li M, Zhang M, Du Y, Wang Q, Li J, Wang G, Pei J, Ding M. Punicalagin Protects Against Diabetic Cardiomyopathy by Promoting Opa1-Mediated Mitochondrial Fusion via Regulating PTP1B-Stat3 Pathway. Antioxid Redox Signal 2021;35:618-41. [PMID: 33906428 DOI: 10.1089/ars.2020.8248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Sevillano J, Sánchez-Alonso MG, Pizarro-Delgado J, Ramos-Álvarez MDP. Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion. Int J Mol Sci 2021;22:5812. [PMID: 34071721 DOI: 10.3390/ijms22115812] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Kerkadi A, Alkudsi DS, Hamad S, Alkeldi HM, Salih R, Agouni A. The Association between Zinc and Copper Circulating Levels and Cardiometabolic Risk Factors in Adults: A Study of Qatar Biobank Data. Nutrients 2021;13:2729. [PMID: 34444889 DOI: 10.3390/nu13082729] [Reference Citation Analysis]
12 Ji Y, Lang X, Wang W, Li S, Zhao C, Shen X, Zhang T, Ye H. Lactobacillus paracasei ameliorates cognitive impairment in high-fat induced obese mice via insulin signaling and neuroinflammation pathways. Food Funct 2021. [PMID: 34365497 DOI: 10.1039/d1fo01320c] [Reference Citation Analysis]
13 Patel AD, Pasha TY, Lunagariya P, Shah U, Bhambharoliya T, Tripathi RKP. A Library of Thiazolidin-4-one Derivatives as Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors: An Attempt To Discover Novel Antidiabetic Agents. ChemMedChem 2020;15:1229-42. [PMID: 32390300 DOI: 10.1002/cmdc.202000055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
14 Correia C, Wang QD, Linhardt G, Carlsson LG, Ulfenborg B, Walentinsson A, Rydén-Markinhutha K, Behrendt M, Wikström J, Sartipy P, Jennbacken K, Synnergren J. Unraveling the Metabolic Derangements Occurring in Non-infarcted Areas of Pig Hearts With Chronic Heart Failure. Front Cardiovasc Med 2021;8:753470. [PMID: 34722683 DOI: 10.3389/fcvm.2021.753470] [Reference Citation Analysis]
15 Cho S. Analysis of Gene Expression Microarray Data Reveals Androgen-Responsive Genes of Muscles in Polycystic Ovarian Syndrome Patients. Processes 2022;10:387. [DOI: 10.3390/pr10020387] [Reference Citation Analysis]
16 Kamar AKDBA, Yin LJ, Liang CT, Fung GT, Avupati VR. Rhodanine scaffold: A review of antidiabetic potential and structure-activity relationships (SAR). Medicine in Drug Discovery 2022. [DOI: 10.1016/j.medidd.2022.100131] [Reference Citation Analysis]
17 Remya RR, Samrot AV, Kumar SS, Mohanavel V, Karthick A, Chinnaiyan VK, Umapathy D, Muhibbullah M, Nassar A. Bioactive Potential of Brown Algae. Adsorption Science & Technology 2022;2022:1-13. [DOI: 10.1155/2022/9104835] [Reference Citation Analysis]
18 Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M. Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2020;26:E37. [PMID: 33374738 DOI: 10.3390/molecules26010037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhao R, Lu Z, Yang J, Zhang L, Li Y, Zhang X. Drug Delivery System in the Treatment of Diabetes Mellitus. Front Bioeng Biotechnol 2020;8:880. [PMID: 32850735 DOI: 10.3389/fbioe.2020.00880] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
20 Alicka M, Kornicka-Garbowska K, Roecken M, Marycz K. Inhibition of the Low Molecular Weight Protein Tyrosine Phosphatase (LMPTP) as a Potential Therapeutic Strategy for Hepatic Progenitor Cells Lipotoxicity-Short Communication. Int J Mol Sci 2019;20:E5873. [PMID: 31771123 DOI: 10.3390/ijms20235873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
21 Parveen A, Farooq MA, Kyunn WW. A New Oleanane Type Saponin from the Aerial Parts of Nigella sativa with Anti-Oxidant and Anti-Diabetic Potential. Molecules 2020;25:E2171. [PMID: 32384790 DOI: 10.3390/molecules25092171] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
22 Genovese M, Nesi I, Caselli A, Paoli P. Natural α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitors: A Source of Scaffold Molecules for Synthesis of New Multitarget Antidiabetic Drugs. Molecules 2021;26:4818. [PMID: 34443409 DOI: 10.3390/molecules26164818] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Li T, Ma X, Fedotov D, Kjaerulff L, Frydenvang K, Coriani S, Hansen PR, Kongstad KT, Staerk D. Structure Elucidation of Prenyl- and Geranyl-Substituted Coumarins in Gerbera piloselloides by NMR Spectroscopy, Electronic Circular Dichroism Calculations, and Single Crystal X-ray Crystallography. Molecules 2020;25:E1706. [PMID: 32276427 DOI: 10.3390/molecules25071706] [Reference Citation Analysis]
24 Wang CR, Tsai HW. Anti- and non-tumor necrosis factor-α-targeted therapies effects on insulin resistance in rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. World J Diabetes 2021; 12(3): 238-260 [PMID: 33758645 DOI: 10.4239/wjd.v12.i3.238] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
25 Legeay S, Fautrat P, Norman JB, Antonova G, Kennard S, Bruder-Nascimento T, Patel VS, Faure S, Belin de Chantemèle EJ. Selective deficiency in endothelial PTP1B protects from diabetes and endoplasmic reticulum stress-associated endothelial dysfunction via preventing endothelial cell apoptosis. Biomed Pharmacother 2020;127:110200. [PMID: 32417688 DOI: 10.1016/j.biopha.2020.110200] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
26 Zachariah M, Maamoun H, Milano L, Rayman MP, Meira LB, Agouni A. Endoplasmic reticulum stress and oxidative stress drive endothelial dysfunction induced by high selenium. J Cell Physiol 2021;236:4348-59. [PMID: 33241572 DOI: 10.1002/jcp.30175] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Behl T, Gupta A, Sehgal A, Albarrati A, Albratty M, Meraya AM, Najmi A, Bhatia S, Bungau S. Exploring protein tyrosine phosphatases (PTP) and PTP-1B inhibitors in management of diabetes mellitus. Biomedicine & Pharmacotherapy 2022;153:113405. [DOI: 10.1016/j.biopha.2022.113405] [Reference Citation Analysis]
28 Zhang J, Chen Z, Zhang L, Zhao X, Liu Z, Zhou W. A systems-based analysis to explore the multiple mechanisms of Shan Zha for treating human diseases. Food Funct 2021;12:1176-91. [PMID: 33432314 DOI: 10.1039/d0fo02433c] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Osman A, Benameur T, Korashy HM, Zeidan A, Agouni A. Interplay between Endoplasmic Reticulum Stress and Large Extracellular Vesicles (Microparticles) in Endothelial Cell Dysfunction. Biomedicines 2020;8:E409. [PMID: 33053883 DOI: 10.3390/biomedicines8100409] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
30 Begum N, Nasir A, Parveen Z, Muhammad T, Ahmed A, Farman S, Jamila N, Shah M, Bibi NS, Khurshid A, Huma Z, Khalil AAK, Albrakati A, Batiha GE. Evaluation of the Hypoglycemic Activity of Morchella conica by Targeting Protein Tyrosine Phosphatase 1B. Front Pharmacol 2021;12:661803. [PMID: 34093192 DOI: 10.3389/fphar.2021.661803] [Reference Citation Analysis]
31 Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol 2020;34:101475. [PMID: 32336668 DOI: 10.1016/j.redox.2020.101475] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
32 Fatima MT, Hasan M, Abdelsalam SS, Sivaraman SK, El-Gamal H, Zahid MA, Elrayess MA, Korashy HM, Zeidan A, Parray AS, Agouni A. Sestrin2 suppression aggravates oxidative stress and apoptosis in endothelial cells subjected to pharmacologically induced endoplasmic reticulum stress. Eur J Pharmacol 2021;907:174247. [PMID: 34116045 DOI: 10.1016/j.ejphar.2021.174247] [Reference Citation Analysis]
33 Gunathilaka TL, Samarakoon K, Ranasinghe P, Peiris LDC. Antidiabetic Potential of Marine Brown Algae-a Mini Review. J Diabetes Res 2020;2020:1230218. [PMID: 32377517 DOI: 10.1155/2020/1230218] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
34 Pedersen HA, Ndi C, Semple SJ, Buirchell B, Møller BL, Staerk D. PTP1B-Inhibiting Branched-Chain Fatty Acid Dimers from Eremophila oppositifolia subsp. angustifolia Identified by High-Resolution PTP1B Inhibition Profiling and HPLC-PDA-HRMS-SPE-NMR Analysis. J Nat Prod 2020;83:1598-610. [PMID: 32255628 DOI: 10.1021/acs.jnatprod.0c00070] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
35 De-la-Cruz-Martínez L, Duran-Becerra C, González-Andrade M, Páez-Franco JC, Germán-Acacio JM, Espinosa-Chávez J, Torres-Valencia JM, Pérez-Villanueva J, Palacios-Espinosa JF, Soria-Arteche O, Cortés-Benítez F. Indole- and Pyrazole-Glycyrrhetinic Acid Derivatives as PTP1B Inhibitors: Synthesis, In Vitro and In Silico Studies. Molecules 2021;26:4375. [PMID: 34299651 DOI: 10.3390/molecules26144375] [Reference Citation Analysis]
36 Sharma P, Singh S, Thakur V, Sharma N, Grewal AS. Novel and emerging therapeutic drug targets for management of type 2 Diabetes Mellitus. Obesity Medicine 2021;23:100329. [DOI: 10.1016/j.obmed.2021.100329] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020;207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
38 Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022;12:972906. [DOI: 10.3389/fonc.2022.972906] [Reference Citation Analysis]
39 Reimer E, Stempel M, Chan B, Bley H, Brinkmann MM. Protein tyrosine phosphatase 1B is involved in efficient type I interferon secretion upon viral infection. J Cell Sci 2020;134:jcs246421. [PMID: 32265274 DOI: 10.1242/jcs.246421] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Mech D, Kurowska A, Trotsko N. The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int J Mol Sci 2021;22:11533. [PMID: 34768964 DOI: 10.3390/ijms222111533] [Reference Citation Analysis]