1 |
Hossain A, Rahman ME, Rahman MS, Nasirujjaman K, Matin MN, Faruqe MO, Rabbee MF. Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (M(pro)) using molecular docking and deep learning methods. Comput Biol Med 2023;157:106785. [PMID: 36931201 DOI: 10.1016/j.compbiomed.2023.106785] [Reference Citation Analysis]
|
2 |
Nisa N, Rasmita B, Arati C, Uditraj C, Siddhartha R, Dinata R, Bhanushree B, Bidanchi RM, Manikandan B, Laskar SA, Abinash G, Pori B, Roy VK, Gurusubramanian G. Repurposing of phyto-ligand molecules from the honey bee products for Alzheimer's disease as novel inhibitors of BACE-1: small molecule bioinformatics strategies as amyloid-based therapy. Environ Sci Pollut Res Int 2023. [PMID: 36808033 DOI: 10.1007/s11356-023-25943-4] [Reference Citation Analysis]
|
3 |
Biswas S, Mita MA, Afrose S, Hasan MR, Islam MT, Rahman MA, Ara MJ, Chowdhury MBA, Meem HN, Mamunuzzaman M, Ahammad T, Ashik IU, Ibrahim MM, Imam MT, Hossain MA, Saleh MA. Integrated Computational Approaches for Inhibiting Sex Hormone-Binding Globulin in Male Infertility by Screening Potent Phytochemicals. Life (Basel) 2023;13. [PMID: 36836833 DOI: 10.3390/life13020476] [Reference Citation Analysis]
|
4 |
Mahmud ML, Islam S, Biswas S, Mortuza MG, Paul GK, Uddin MS, Akhtar-E-Ekram M, Saleh MA, Zaman S, Syed A, Elgorban AM, Zaghloul NSS. Klebsiella pneumoniae Volatile Organic Compounds (VOCs) Protect Artemia salina from Fish Pathogen Aeromonas sp.: A Combined In Vitro, In Vivo, and In Silico Approach. Microorganisms 2023;11. [PMID: 36677466 DOI: 10.3390/microorganisms11010172] [Reference Citation Analysis]
|
5 |
Joy C, Cyriac MC. Phytochemicals as Potential Drug Candidates for SARS Cov-2: An RDRp Based In-Silico Drug Designing. Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022) 2023. [DOI: 10.2991/978-94-6463-020-6_7] [Reference Citation Analysis]
|
6 |
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022;7:387. [PMID: 36464706 DOI: 10.1038/s41392-022-01249-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
7 |
Murali M, Nair B, Vishnu VR, Aneesh TP, Nath LR. 2,4-Dihydroxycinnamic acid as spike ACE2 inhibitor and apigenin as RdRp inhibitor in Nimbamritadi Panchatiktam Kashayam against COVID-19: an in silico and in vitro approach. Mol Divers 2022. [DOI: 10.1007/s11030-022-10552-z] [Reference Citation Analysis]
|
8 |
Munia NS, Hosen MA, Azzam KMA, Al-ghorbani M, Baashen M, Hossain MK, Ali F, Mahmud S, Shimu MSS, Almalki FA, Hadda TB, Laaroussi H, Naimi S, Kawsar SMA. Synthesis, antimicrobial, SAR, PASS, molecular docking, molecular dynamics and pharmacokinetics studies of 5′-O-uridine derivatives bearing acyl moieties: POM study and identification of the pharmacophore sites. Nucleosides, Nucleotides & Nucleic Acids 2022;41:1036-1083. [DOI: 10.1080/15257770.2022.2096898] [Reference Citation Analysis]
|
9 |
Islam S, Pramanik MJ, Biswas S, Moniruzzaman M, Biswas J, Akhtar-E-Ekram M, Zaman S, Uddin MS, Saleh MA, Hassan S. Biological Efficacy of Compounds from Stingless Honey and Sting Honey against Two Pathogenic Bacteria: An In Vitro and In Silico Study. Molecules 2022;27:6536. [PMID: 36235073 DOI: 10.3390/molecules27196536] [Reference Citation Analysis]
|
10 |
Kawsar SMA, Almalki FA, Hadd TB, Laaroussi H, Khan MAR, Hosen MA, Mahmud S, Aounti A, Maideen NMP, Heidarizadeh F, Soliman SSM. Potential antifungal activity of novel carbohydrate derivatives validated by POM, molecular docking and molecular dynamic simulations analyses. Molecular Simulation. [DOI: 10.1080/08927022.2022.2123948] [Reference Citation Analysis]
|
11 |
Salih RHH, Hasan AH, Hussein AJ, Samad MK, Shakya S, Jamalis J, Hawaiz FE, Pratama MRF. One-pot synthesis, molecular docking, ADMET, and DFT studies of novel pyrazolines as promising SARS-CoV-2 main protease inhibitors. Res Chem Intermed. [DOI: 10.1007/s11164-022-04831-5] [Reference Citation Analysis]
|
12 |
Faloye KO, Mahmud S, Fakola EG, Oyetunde YM, Fajobi SJ, Ugwo JP, Olusola AJ, Famuyiwa SO, Olajubutu OG, Oguntade TI, Obaidullah AJ. Revealing the Acetylcholinesterase Inhibitory Potential of Phyllanthus amarus and Its Phytoconstituents: In Vitro and in Silico Approach. Bioinform Biol Insights 2022;16:11779322221118330. [PMID: 36046175 DOI: 10.1177/11779322221118330] [Reference Citation Analysis]
|
13 |
Mahmood TB, Hossan MI, Mahmud S, Shimu MSS, Alam MJ, Bhuyan MMR, Emran TB. Missense mutations in spike protein of SARS‐CoV‐2 delta variant contribute to the alteration in viral structure and interaction with hACE2 receptor. Immunity Inflam & Disease 2022;10. [DOI: 10.1002/iid3.683] [Reference Citation Analysis]
|
14 |
Goldust M. Coronavirus Disease 2019 (COVID-19). Biology 2022;11:1250. [DOI: 10.3390/biology11081250] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Rani I, Kalsi A, Kaur G, Sharma P, Gupta S, Gautam RK, Chopra H, Bibi S, Ahmad SU, Singh I, Dhawan M, Emran TB. Modern drug discovery applications for the identification of novel candidates for COVID-19 infections. Annals of Medicine and Surgery 2022;80:104125. [DOI: 10.1016/j.amsu.2022.104125] [Reference Citation Analysis]
|
16 |
Raman K, Rajagopal K, Islam F, Dhawan M, Mitra S, Aparna B, Varakumar P, Byran G, Choudhary OP, Emran TB. Role of natural products towards the SARS-CoV-2: A critical review. Annals of Medicine and Surgery 2022;80:104062. [DOI: 10.1016/j.amsu.2022.104062] [Reference Citation Analysis]
|
17 |
Anowar Hosen M, Sultana Munia N, Al-ghorbani M, Baashen M, Almalki FA, Ben Hadda T, Ali F, Mahmud S, Abu Saleh M, Laaroussi H, Kawsar SM. Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites. Bioorganic Chemistry 2022;125:105850. [DOI: 10.1016/j.bioorg.2022.105850] [Reference Citation Analysis]
|
18 |
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022;122:11287-368. [PMID: 35594413 DOI: 10.1021/acs.chemrev.1c00965] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
|
19 |
Chakrabartty I, Khan M, Mahanta S, Chopra H, Dhawan M, Choudhary OP, Bibi S, Mohanta YK, Emran TB. Comparative overview of emerging RNA viruses: Epidemiology, pathogenesis, diagnosis and current treatment. Ann Med Surg (Lond) 2022;79:103985. [PMID: 35721786 DOI: 10.1016/j.amsu.2022.103985] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
20 |
Sraphet S, Javadi B. Application of Hierarchical Clustering to Analyze Solvent-Accessible Surface Area Patterns in Amycolatopsis lipases. Biology 2022;11:652. [DOI: 10.3390/biology11050652] [Reference Citation Analysis]
|
21 |
Abas AH, Marfuah S, Idroes R, Kusumawaty D, Fatimawali, Park MN, Siyadatpanah A, Alhumaydhi FA, Mahmud S, Tallei TE, Emran TB, Kim B. Can the SARS-CoV-2 Omicron Variant Confer Natural Immunity against COVID-19? Molecules 2022;27:2221. [DOI: 10.3390/molecules27072221] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
22 |
Sadeghi M, Miroliaei M. Inhibitory effects of selected isoquinoline alkaloids against main protease (Mpro) of SARS-CoV-2, in silico study. In Silico Pharmacol 2022;10. [DOI: 10.1007/s40203-022-00122-4] [Reference Citation Analysis]
|
23 |
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature’s toolbox of bioactive compounds. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.03.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
24 |
Li SG, Yang KS, Blankenship LR, Cho CD, Xu S, Wang H, Liu WR. An Enhanced Hybrid Screening Approach to Identify Potent Inhibitors for the SARS-CoV-2 Main Protease From the NCI Compound Library. Front Chem 2022;10:816576. [DOI: 10.3389/fchem.2022.816576] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Saleh MA, Mahmud S, Albogami S, El-shehawi AM, Paul GK, Islam S, Dutta AK, Uddin MS, Zaman S. Biochemical and Molecular Dynamics Study of a Novel GH 43 α-l-Arabinofuranosidase/β-Xylosidase From Caldicellulosiruptor saccharolyticus DSM8903. Front Bioeng Biotechnol 2022;10:810542. [DOI: 10.3389/fbioe.2022.810542] [Reference Citation Analysis]
|
26 |
Kumar Paul G, Mahmud S, Aldahish AA, Afroze M, Biswas S, Briti Ray Gupta S, Hasan Razu M, Zaman S, Salah Uddin M, Nahari MH, Merae Alshahrani M, Abdul Rahman Alshahrani M, Khan M, Abu Saleh M. Computational screening and biochemical analysis of Pistacia integerrima and Pandanus odorifer plants to find effective inhibitors against Receptor-Binding domain (RBD) of the spike protein of SARS-Cov-2. Arab J Chem 2022;15:103600. [PMID: 34909068 DOI: 10.1016/j.arabjc.2021.103600] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
|
27 |
Amin MR, Yasmin F, Dey S, Mahmud S, Saleh MA, Emran TB, Hasan I, Rajia S, Ogawa Y, Fujii Y, Yamada M, Ozeki Y, Kawsar SMA. Methyl β-D-galactopyranoside esters as potential inhibitors for SARS-CoV-2 protease enzyme: synthesis, antimicrobial, PASS, molecular docking, molecular dynamics simulations and quantum computations. Glycoconj J 2022. [PMID: 35037163 DOI: 10.1007/s10719-021-10039-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
28 |
Ripanda AS, Rwiza MJ, Nyanza EC, Njau KN, Vuai SAH, Machunda RL. A Review on Contaminants of Emerging Concern in the Environment: A Focus on Active Chemicals in Sub-Saharan Africa. Applied Sciences 2021;12:56. [DOI: 10.3390/app12010056] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
29 |
Diniz LRL, Elshabrawy HA, Souza MTS, Duarte ABS, Datta S, de Sousa DP. Catechins: Therapeutic Perspectives in COVID-19-Associated Acute Kidney Injury. Molecules 2021;26:5951. [PMID: 34641495 DOI: 10.3390/molecules26195951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
30 |
Mousavi SS, Karami A, Haghighi TM, Tumilaar SG, Fatimawali, Idroes R, Mahmud S, Celik I, Ağagündüz D, Tallei TE, Emran TB, Capasso R. In Silico Evaluation of Iranian Medicinal Plant Phytoconstituents as Inhibitors against Main Protease and the Receptor-Binding Domain of SARS-CoV-2. Molecules 2021;26:5724. [PMID: 34577194 DOI: 10.3390/molecules26185724] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
|
31 |
Dutta M, Tareq AM, Rakib A, Mahmud S, Sami SA, Mallick J, Islam MN, Majumder M, Uddin MZ, Alsubaie A, Almalki ASA, Khandaker MU, Bradley DA, Rana MS, Emran TB. Phytochemicals from Leucas zeylanica Targeting Main Protease of SARS-CoV-2: Chemical Profiles, Molecular Docking, and Molecular Dynamics Simulations. Biology (Basel) 2021;10:789. [PMID: 34440024 DOI: 10.3390/biology10080789] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
|
32 |
Hasan MR, Chowdhury SM, Aziz MA, Shahriar A, Ahmed H, Khan MA, Mahmud S, Emran TB. In silico analysis of ciprofloxacin analogs as inhibitors of DNA gyrase of Staphylococcus aureus. Informatics in Medicine Unlocked 2021;26:100748. [DOI: 10.1016/j.imu.2021.100748] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|