BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Aroca A, Gotor C, Bassham DC, Romero LC. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020;9:E621. [PMID: 32679888 DOI: 10.3390/antiox9070621] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 22.0] [Reference Citation Analysis]
Number Citing Articles
1 Shi J, Zhang D, Li M, Wang Y, Liu L, Wang T, Guo F, Wu X. A new fluorescent probe for hydrogen sulfide based on naphthalimide derivatives and its biological application. Inorganic Chemistry Communications 2022;146:110087. [DOI: 10.1016/j.inoche.2022.110087] [Reference Citation Analysis]
2 Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants 2022;11:2162. [DOI: 10.3390/antiox11112162] [Reference Citation Analysis]
3 Kolupaev YE, Karpets YV, Shkliarevskyi MA, Yastreb TO, Plohovska SH, Yemets АI, Blume YB. Gasotransmitters in Plants: Mechanisms of Participation in Adaptive Responses. TOASJ 2022;16. [DOI: 10.2174/18743315-v16-e2207050] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Lee J, Terada T, Jiang W, Miyazaki H, Yoshida S. Theaflavin indicates a high protective effect on vascular endothelial cells via stimulation of hydrogen sulfide production.. [DOI: 10.21203/rs.3.rs-2024243/v1] [Reference Citation Analysis]
5 Wang R, Fan Z, Wei Z, Wang L, Wang T, Li W, Ma D, Guo Z, Yun K. Decomposition kinetics and postmortem production of hydrogen sulfide and its metabolites. Forensic Sci Int 2022;340:111426. [PMID: 36007360 DOI: 10.1016/j.forsciint.2022.111426] [Reference Citation Analysis]
6 Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, Al-Ouqaili MTS, Chinedu Ikem J, Victor Chigozie U, Saki M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal 2022;:e24655. [PMID: 35949048 DOI: 10.1002/jcla.24655] [Reference Citation Analysis]
7 Duarte B, Fonseca VF, Reis-santos P, Caçador I. Bioinvasion by Spartina patens alters sediment biogeochemical functioning of European salt marshes. Biol Invasions. [DOI: 10.1007/s10530-022-02841-3] [Reference Citation Analysis]
8 de Lanlay DB, Monthieux A, Banydeen R, Jean-laurent M, Resiere D, Drame M, Neviere R. Risk of preeclampsia among women living in coastal areas impacted by sargassum strandings on the French Caribbean island of Martinique. Environmental Toxicology and Pharmacology 2022. [DOI: 10.1016/j.etap.2022.103894] [Reference Citation Analysis]
9 Liao CY, Wang P, Yin Y, Bassham DC. Interactions between autophagy and phytohormone signaling pathways in plants. FEBS Lett 2022. [PMID: 35460261 DOI: 10.1002/1873-3468.14355] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Khan MSS, Islam F, Ye Y, Ashline M, Wang D, Zhao B, Fu ZQ, Chen J. The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022;23:4272. [PMID: 35457090 DOI: 10.3390/ijms23084272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Liu Y, Ding W, Lang X, Xing C, Wang R, Huang K, Fu B, Ma H, Peng Y, Shen B. Refining the early Cambrian marine redox profile by using pyrite sulfur and iron isotopes. Global and Planetary Change 2022. [DOI: 10.1016/j.gloplacha.2022.103817] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Kolupaev Y, Yur’ev Institute of Plant Breeding, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine 142 Moskovskyi Ave., Kharkiv, 61060, Ukraine, Havva K, State Biotechnological University 44 Alcheskikh Ave., Kharkiv, 61002, Ukraine, State Biotechnological University 44 Alcheskikh Ave., Kharkiv, 61002, Ukraine. Molecular mechanisms of hydrogen sulfide's participation in adaptive reactions of plants. Fiziol rast genet 2022;54. [DOI: 10.15407/frg2022.01.003] [Reference Citation Analysis]
13 Zhou M, Zhang J, Zhou H, Zhao D, Duan T, Wang S, Yuan X, Xie Y. Hydrogen Sulfide-Linked Persulfidation Maintains Protein Stability of ABSCISIC ACID-INSENSITIVE 4 and Delays Seed Germination. Int J Mol Sci 2022;23:1389. [PMID: 35163311 DOI: 10.3390/ijms23031389] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
14 Cheng P, Zhang Y, Wang J, Guan R, Pu H, Shen W. Importance of hydrogen sulfide as the molecular basis of heterosis in hybrid Brassica napus: A case study in salinity response. Environmental and Experimental Botany 2022;193:104693. [DOI: 10.1016/j.envexpbot.2021.104693] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
15 Aroca A, Jurado-flores A, Filipovic MR, Gotor C, Romero LC. Detection of protein persulfidation in plants by the dimedone switch method. Methods in Enzymology 2022. [DOI: 10.1016/bs.mie.2022.07.024] [Reference Citation Analysis]
16 Raza A, Tabassum J, Mubarik MS, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H. Hydrogen sulfide: an emerging component against abiotic stress in plants. Plant Biol (Stuttg) 2021. [PMID: 34870354 DOI: 10.1111/plb.13368] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
17 Shackelford RE, Li Y, Ghali GE, Kevil CG. Bad Smells and Broken DNA: A Tale of Sulfur-Nucleic Acid Cooperation. Antioxidants (Basel) 2021;10:1820. [PMID: 34829691 DOI: 10.3390/antiox10111820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Werner S, Glaser C, Kasper T, Lê TNN, Gross S, Smarsly BM. H2 S Dosimetry by CuO: Towards Stable Sensors by Unravelling the Underlying Solid-State Chemistry. Chemistry 2021. [PMID: 34731507 DOI: 10.1002/chem.202103437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Molinett SA, Alfaro JF, Sáez FA, Elgueta S, Moya-León MA, Figueroa CR. Postharvest Treatment of Hydrogen Sulfide Delays the Softening of Chilean Strawberry Fruit by Downregulating the Expression of Key Genes Involved in Pectin Catabolism. Int J Mol Sci 2021;22:10008. [PMID: 34576171 DOI: 10.3390/ijms221810008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
20 Dai J, Teng X, Jin S, Wu Y. The Antiviral Roles of Hydrogen Sulfide by Blocking the Interaction between SARS-CoV-2 and Its Potential Cell Surface Receptors. Oxid Med Cell Longev 2021;2021:7866992. [PMID: 34497683 DOI: 10.1155/2021/7866992] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
21 Rivas-Domínguez A, Pastor N, Martínez-López L, Colón-Pérez J, Bermúdez B, Orta ML. The Role of DNA Damage Response in Dysbiosis-Induced Colorectal Cancer. Cells 2021;10:1934. [PMID: 34440703 DOI: 10.3390/cells10081934] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
22 Chen S, Wang X, Jia H, Li F, Ma Y, Liesche J, Liao M, Ding X, Liu C, Chen Y, Li N, Li J. Persulfidation-induced structural change in SnRK2.6 establishes intramolecular interaction between phosphorylation and persulfidation. Mol Plant 2021:S1674-2052(21)00268-9. [PMID: 34242849 DOI: 10.1016/j.molp.2021.07.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
23 Myszkowska J, Derevenkov I, Makarov SV, Spiekerkoetter U, Hannibal L. Biosynthesis, Quantification and Genetic Diseases of the Smallest Signaling Thiol Metabolite: Hydrogen Sulfide. Antioxidants (Basel) 2021;10:1065. [PMID: 34356298 DOI: 10.3390/antiox10071065] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
24 Chen YH, Teng X, Hu ZJ, Tian DY, Jin S, Wu YM. Hydrogen Sulfide Attenuated Sepsis-Induced Myocardial Dysfunction Through TLR4 Pathway and Endoplasmic Reticulum Stress. Front Physiol 2021;12:653601. [PMID: 34177611 DOI: 10.3389/fphys.2021.653601] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
25 Aroca A, Zhang J, Xie Y, Romero LC, Gotor C. Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms. J Exp Bot 2021:erab239. [PMID: 34077530 DOI: 10.1093/jxb/erab239] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 19.0] [Reference Citation Analysis]
26 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot 2021;72:830-47. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 22.0] [Reference Citation Analysis]
27 Mendes SS, Miranda V, Saraiva LM. Hydrogen Sulfide and Carbon Monoxide Tolerance in Bacteria. Antioxidants (Basel) 2021;10:729. [PMID: 34063102 DOI: 10.3390/antiox10050729] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
28 Thakur M, Anand A. Hydrogen sulfide: An emerging signaling molecule regulating drought stress response in plants. Physiol Plant 2021;172:1227-43. [PMID: 33860955 DOI: 10.1111/ppl.13432] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
29 Jurado-Flores A, Romero LC, Gotor C. Label-Free Quantitative Proteomic Analysis of Nitrogen Starvation in Arabidopsis Root Reveals New Aspects of H2S Signaling by Protein Persulfidation. Antioxidants (Basel) 2021;10:508. [PMID: 33805243 DOI: 10.3390/antiox10040508] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
30 Zhang H, Dai J, Tian D, Xiao L, Xue H, Guo Q, Zhang X, Teng X, Jin S, Wu Y. Hydrogen Sulfide Restored the Diurnal Variation in Cardiac Function of Aging Mice. Oxid Med Cell Longev 2021;2021:8841575. [PMID: 33747351 DOI: 10.1155/2021/8841575] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
31 Randi EB, Casili G, Jacquemai S, Szabo C. Selenium-Binding Protein 1 (SELENBP1) Supports Hydrogen Sulfide Biosynthesis and Adipogenesis. Antioxidants (Basel) 2021;10:361. [PMID: 33673622 DOI: 10.3390/antiox10030361] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
32 Szabo C. Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial Function in Cancer Cells. Cells 2021;10:220. [PMID: 33499368 DOI: 10.3390/cells10020220] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 30.0] [Reference Citation Analysis]
33 Rai P, Singh VP, Peralta-Videa J, Tripathi DK, Sharma S, Corpas FJ. Hydrogen sulfide (H2S) underpins the beneficial silicon effects against the copper oxide nanoparticles (CuO NPs) phytotoxicity in Oryza sativa seedlings. J Hazard Mater 2021;415:124907. [PMID: 34088169 DOI: 10.1016/j.jhazmat.2020.124907] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
34 Arif MS, Yasmeen T, Abbas Z, Ali S, Rizwan M, Aljarba NH, Alkahtani S, Abdel-Daim MM. Role of Exogenous and Endogenous Hydrogen Sulfide (H2S) on Functional Traits of Plants Under Heavy Metal Stresses: A Recent Perspective. Front Plant Sci 2020;11:545453. [PMID: 33488636 DOI: 10.3389/fpls.2020.545453] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
35 Donald JA. Hydrogen sulfide. Handbook of Hormones 2021. [DOI: 10.1016/b978-0-12-820649-2.00303-x] [Reference Citation Analysis]
36 Pantaleno R, Scuffi D, García‐mata C. Hydrogen sulphide as a guard cell network regulator. New Phytol 2021;230:451-6. [DOI: 10.1111/nph.17113] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
37 Vojtovič D, Luhová L, Petřivalský M. Something smells bad to plant pathogens: Production of hydrogen sulfide in plants and its role in plant defence responses. J Adv Res 2021;27:199-209. [PMID: 33318878 DOI: 10.1016/j.jare.2020.09.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
38 Künstler A, Gullner G, Ádám AL, Kolozsváriné Nagy J, Király L. The Versatile Roles of Sulfur-Containing Biomolecules in Plant Defense-A Road to Disease Resistance. Plants (Basel) 2020;9:E1705. [PMID: 33287437 DOI: 10.3390/plants9121705] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
39 Jose DA, Sakla R, Sharma N, Gadiyaram S, Kaushik R, Ghosh A. Sensing and Bioimaging of the Gaseous Signaling Molecule Hydrogen Sulfide by Near-Infrared Fluorescent Probes. ACS Sens 2020;5:3365-91. [PMID: 33166465 DOI: 10.1021/acssensors.0c02005] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 25.0] [Reference Citation Analysis]
40 Shah AM, Ma J, Wang Z, Hu R, Wang X, Peng Q, Amevor FK, Goswami N. Production of Hydrogen Sulfide by Fermentation in Rumen and Its Impact on Health and Production of Animals. Processes 2020;8:1169. [DOI: 10.3390/pr8091169] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
41 Aroca A, Yruela I, Gotor C, Bassham DC. Persulfidation of ATG18a regulates autophagy under ER stress in Arabidopsis. Proc Natl Acad Sci U S A 2021;118:e2023604118. [PMID: 33975948 DOI: 10.1073/pnas.2023604118] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Reference Citation Analysis]