BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rodríguez-Ruiz M, González-Gordo S, Cañas A, Campos MJ, Paradela A, Corpas FJ, Palma JM. Sweet Pepper (Capsicum annuum L.) Fruits Contain an Atypical Peroxisomal Catalase That is Modulated by Reactive Oxygen and Nitrogen Species. Antioxidants (Basel) 2019;8:E374. [PMID: 31487955 DOI: 10.3390/antiox8090374] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 González-Gordo S, Rodríguez-Ruiz M, Paradela A, Ramos-Fernández A, Corpas FJ, Palma JM. Mitochondrial protein expression during sweet pepper (Capsicum annuum L.) fruit ripening: iTRAQ-based proteomic analysis and role of cytochrome c oxidase. J Plant Physiol 2022;274:153734. [PMID: 35667195 DOI: 10.1016/j.jplph.2022.153734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Rezayian M, Ebrahimzadeh H, Niknam V. Metabolic and Physiological Changes Induced by Nitric Oxide and Its Impact on Drought Tolerance in Soybean. J Plant Growth Regul. [DOI: 10.1007/s00344-022-10668-4] [Reference Citation Analysis]
3 González-gordo S, Palma JM, Corpas FJ. Peroxisomal Proteome Mining of Sweet Pepper (Capsicum annuum L.) Fruit Ripening Through Whole Isobaric Tags for Relative and Absolute Quantitation Analysis. Front Plant Sci 2022;13:893376. [DOI: 10.3389/fpls.2022.893376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Iwaniuk P, Borusiewicz A, Lozowicka B. Fluazinam and its mixtures induce diversified changes of crucial biochemical and antioxidant profile in leafy vegetable. Scientia Horticulturae 2022;298:110988. [DOI: 10.1016/j.scienta.2022.110988] [Reference Citation Analysis]
5 González-gordo S, Rodríguez-ruiz M, López-jaramillo J, Muñoz-vargas MA, Palma JM, Corpas FJ. Nitric Oxide (NO) Differentially Modulates the Ascorbate Peroxidase (APX) Isozymes of Sweet Pepper (Capsicum annuum L.) Fruits. Antioxidants 2022;11:765. [DOI: 10.3390/antiox11040765] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Kovač V, Bergant M, Ščančar J, Primožič J, Jamnik P, Poljšak B. Causation of Oxidative Stress and Defense Response of a Yeast Cell Model after Treatment with Orthodontic Alloys Consisting of Metal Ions. Antioxidants 2022;11:63. [DOI: 10.3390/antiox11010063] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Corpas FJ, González-gordo S, Palma JM. Protein nitration: A connecting bridge between nitric oxide (NO) and plant stress. Plant Stress 2021;2:100026. [DOI: 10.1016/j.stress.2021.100026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Liu L, Huang L, Sun C, Wang L, Jin C, Lin X. Cross-Talk between Hydrogen Peroxide and Nitric Oxide during Plant Development and Responses to Stress. J Agric Food Chem 2021;69:9485-97. [PMID: 34428901 DOI: 10.1021/acs.jafc.1c01605] [Reference Citation Analysis]
9 Zuccarelli R, Rodríguez-Ruiz M, Lopes-Oliveira PJ, Pascoal GB, Andrade SCS, Furlan CM, Purgatto E, Palma JM, Corpas FJ, Rossi M, Freschi L. Multifaceted roles of nitric oxide in tomato fruit ripening: NO-induced metabolic rewiring and consequences for fruit quality traits. J Exp Bot 2021;72:941-58. [PMID: 33165620 DOI: 10.1093/jxb/eraa526] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
10 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot 2021;72:830-47. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
11 Guevara L, Domínguez-Anaya MÁ, Ortigosa A, González-Gordo S, Díaz C, Vicente F, Corpas FJ, Pérez Del Palacio J, Palma JM. Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper (Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO). Int J Mol Sci 2021;22:4476. [PMID: 33922964 DOI: 10.3390/ijms22094476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology (Basel) 2021;10:267. [PMID: 33810535 DOI: 10.3390/biology10040267] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Corpas FJ, González-Gordo S, Palma JM. Nitric Oxide (NO) Scaffolds the Peroxisomal Protein-Protein Interaction Network in Higher Plants. Int J Mol Sci 2021;22:2444. [PMID: 33671021 DOI: 10.3390/ijms22052444] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Iqbal N, Umar S, Khan NA, Corpas FJ. Nitric Oxide and Hydrogen Sulfide Coordinately Reduce Glucose Sensitivity and Decrease Oxidative Stress via Ascorbate-Glutathione Cycle in Heat-Stressed Wheat (Triticum aestivum L.) Plants. Antioxidants (Basel) 2021;10:108. [PMID: 33466569 DOI: 10.3390/antiox10010108] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
15 Sánchez-McSweeney A, González-Gordo S, Aranda-Sicilia MN, Rodríguez-Rosales MP, Venema K, Palma JM, Corpas FJ. Loss of function of the chloroplast membrane K+/H+ antiporters AtKEA1 and AtKEA2 alters the ROS and NO metabolism but promotes drought stress resilience. Plant Physiol Biochem 2021;160:106-19. [PMID: 33485149 DOI: 10.1016/j.plaphy.2021.01.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 2020;324:211-9. [PMID: 33115661 DOI: 10.1016/j.jbiotec.2020.10.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
17 Palma JM, Terán F, Contreras-Ruiz A, Rodríguez-Ruiz M, Corpas FJ. Antioxidant Profile of Pepper (Capsicum annuum L.) Fruits Containing Diverse Levels of Capsaicinoids. Antioxidants (Basel) 2020;9:E878. [PMID: 32957493 DOI: 10.3390/antiox9090878] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Hancock JT, Veal D, Kolbert Z. Nitric oxide, other reactive signalling compounds, redox, and reductive stress. Journal of Experimental Botany 2021;72:819-29. [DOI: 10.1093/jxb/eraa331] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
19 Solórzano E, Corpas FJ, González-gordo S, Palma JM. Reactive Oxygen Species (ROS) Metabolism and Nitric Oxide (NO) Content in Roots and Shoots of Rice (Oryza sativa L.) Plants under Arsenic-Induced Stress. Agronomy 2020;10:1014. [DOI: 10.3390/agronomy10071014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
20 Corpas FJ, González-Gordo S, Palma JM. Plant Peroxisomes: A Factory of Reactive Species. Front Plant Sci 2020;11:853. [PMID: 32719691 DOI: 10.3389/fpls.2020.00853] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
21 Palma JM, Mateos RM, López-Jaramillo J, Rodríguez-Ruiz M, González-Gordo S, Lechuga-Sancho AM, Corpas FJ. Plant catalases as NO and H2S targets. Redox Biol 2020;34:101525. [PMID: 32505768 DOI: 10.1016/j.redox.2020.101525] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 20.5] [Reference Citation Analysis]
22 Calumpang CLF, Saigo T, Watanabe M, Tohge T. Cross-Species Comparison of Fruit-Metabolomics to Elucidate Metabolic Regulation of Fruit Polyphenolics Among Solanaceous Crops. Metabolites 2020;10:E209. [PMID: 32438728 DOI: 10.3390/metabo10050209] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
23 González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Superoxide Radical Metabolism in Sweet Pepper (Capsicum annuum L.) Fruits Is Regulated by Ripening and by a NO-Enriched Environment. Front Plant Sci 2020;11:485. [PMID: 32477380 DOI: 10.3389/fpls.2020.00485] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
24 Kohli SK, Khanna K, Bhardwaj R, Abd Allah EF, Ahmad P, Corpas FJ. Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants (Basel) 2019;8:E641. [PMID: 31842380 DOI: 10.3390/antiox8120641] [Cited by in Crossref: 91] [Cited by in F6Publishing: 53] [Article Influence: 30.3] [Reference Citation Analysis]
25 Corpas FJ. Nitric Oxide and Hydrogen Sulfide in Higher Plants under Physiological and Stress Conditions. Antioxidants (Basel) 2019;8:E457. [PMID: 31591332 DOI: 10.3390/antiox8100457] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]