BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Raza A, Su W, Hussain MA, Mehmood SS, Zhang X, Cheng Y, Zou X, Lv Y. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.). Front Plant Sci 2021;12:721681. [PMID: 34691103 DOI: 10.3389/fpls.2021.721681] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Lei Y, He H, Raza A, Liu Z, Xiaoyu D, Guijuan W, Yan L, Yong C, Xiling Z. Exogenous melatonin confers cold tolerance in rapeseed (Brassica napus L.) seedlings by improving antioxidants and genes expression. Plant Signal Behav 2022;17:2129289. [PMID: 36205498 DOI: 10.1080/15592324.2022.2129289] [Reference Citation Analysis]
2 Hussain MA, Luo D, Zeng L, Ding X, Cheng Y, Zou X, Lv Y, Lu G. Genome-wide transcriptome profiling revealed biological macromolecules respond to low temperature stress in Brassica napus L. Front Plant Sci 2022;13. [DOI: 10.3389/fpls.2022.1050995] [Reference Citation Analysis]
3 Liu X, Wei R, Tian M, Liu J, Ruan Y, Sun C, Liu C. Combined Transcriptome and Metabolome Profiling Provide Insights into Cold Responses in Rapeseed (Brassica napus L.) Genotypes with Contrasting Cold-Stress Sensitivity. IJMS 2022;23:13546. [DOI: 10.3390/ijms232113546] [Reference Citation Analysis]
4 Yang L, Yang L, Zhao C, Liu J, Tong C, Zhang Y, Cheng X, Jiang H, Shen J, Xie M, Liu S. Differential alternative splicing genes and isoform co-expression networks of Brassica napus under multiple abiotic stresses. Front Plant Sci 2022;13:1009998. [DOI: 10.3389/fpls.2022.1009998] [Reference Citation Analysis]
5 Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, Zhuang W, Varshney RK. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 2022;:1-28. [PMID: 35968922 DOI: 10.1080/07388551.2022.2093695] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
6 Jiang H, Song Z, Su Q, Wei Z, Li W, Jiang Z, Tian P, Wang Z, Yang X, Yang M, Wei X, Wu Z. Transcriptomic and metabolomic reveals silicon enhances adaptation of rice under dry cultivation by improving flavonoid biosynthesis, osmoregulation, and photosynthesis. Front Plant Sci 2022;13:967537. [DOI: 10.3389/fpls.2022.967537] [Reference Citation Analysis]
7 Zhang J, An H, Zhang X, Xu F, Zhou B. Transcriptomic Analysis Reveals Potential Gene Regulatory Networks Under Cold Stress of Loquat (Eriobotrya japonica Lindl.). Front Plant Sci 2022;13:944269. [DOI: 10.3389/fpls.2022.944269] [Reference Citation Analysis]
8 Wang C, Xu M, Wang Y, Batchelor WD, Zhang J, Kuai J, Ling L. Long-Term Optimal Management of Rapeseed Cultivation Simulated with the CROPGRO-Canola Model. Agronomy 2022;12:1191. [DOI: 10.3390/agronomy12051191] [Reference Citation Analysis]
9 Zhang L, Miao L, He J, Li H, Li M. The Transcriptome and Metabolome Reveal the Potential Mechanism of Lodging Resistance in Intergeneric Hybrids between Brassica napus and Capsella bursa-pastoris. Int J Mol Sci 2022;23:4481. [PMID: 35562871 DOI: 10.3390/ijms23094481] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Raza A, Su W, Jia Z, Luo D, Zhang Y, Gao A, Hussain MA, Mehmood SS, Cheng Y, Lv Y, Zou X. Mechanistic Insights Into Trehalose-Mediated Cold Stress Tolerance in Rapeseed (Brassica napus L.) Seedlings. Front Plant Sci 2022;13:857980. [PMID: 35360297 DOI: 10.3389/fpls.2022.857980] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. Front Plant Sci 2022;13:819658. [DOI: 10.3389/fpls.2022.819658] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
12 Zhang J, Liang L, Xie Y, Zhao Z, Su L, Tang Y, Sun B, Lai Y, Li H. Transcriptome and Metabolome Analyses Reveal Molecular Responses of Two Pepper (Capsicum annuum L.) Cultivars to Cold Stress. Front Plant Sci 2022;13:819630. [DOI: 10.3389/fpls.2022.819630] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Yan L, Zeng L, Raza A, Lv Y, Ding X, Cheng Y, Zou X. Inositol Improves Cold Tolerance Through Inhibiting CBL1 and Increasing Ca2+ Influx in Rapeseed (Brassica napus L.). Front Plant Sci 2022;13:775692. [DOI: 10.3389/fpls.2022.775692] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Rasool F, Khan MR, Schneider M, Uzair M, Aqeel M, Ajmal W, Léon J, Naz AA. Transcriptome unveiled the gene expression patterns of root architecture in drought-tolerant and sensitive wheat genotypes. Plant Physiol Biochem 2022;178:20-30. [PMID: 35247694 DOI: 10.1016/j.plaphy.2022.02.025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
15 Zhang Y, Raza A, Huang H, Su W, Luo D, Zeng L, Ding X, Cheng Y, Liu Z, Li Q, Lv Y, Zou X. Analysis of Lhcb gene family in rapeseed (Brassica napus L.) identifies a novel member “BnLhcb3.4” modulating cold tolerance. Environmental and Experimental Botany 2022. [DOI: 10.1016/j.envexpbot.2022.104848] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F Jr, Zhang C, Chen H, Zhuang W, Varshney RK. Advances in "Omics" Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. Front Plant Sci 2021;12:794373. [PMID: 35058954 DOI: 10.3389/fpls.2021.794373] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
17 Zaynab M, Peng J, Sharif Y, Albaqami M, Al-yahyai R, Fatima M, Nadeem MA, Khan KA, Alotaibi SS, Alaraidh IA, Shaikhaldein HO, Li S. Genome-Wide Identification and Expression Profiling of DUF221 Gene Family Provides New Insights Into Abiotic Stress Responses in Potato. Front Plant Sci 2022;12:804600. [DOI: 10.3389/fpls.2021.804600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Pervaiz T, Amjid MW, El-kereamy A, Niu S, Wu HX. MicroRNA and cDNA-Microarray as Potential Targets against Abiotic Stress Response in Plants: Advances and Prospects. Agronomy 2021;12:11. [DOI: 10.3390/agronomy12010011] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Dey S, Biswas A, Huang S, Li D, Liu L, Deng Y, Xiao A, Birhanie ZM, Zhang J, Li J, Gong Y. Low Temperature Effect on Different Varieties of Corchorus capsularis and Corchorus olitorius at Seedling Stage. Agronomy 2021;11:2547. [DOI: 10.3390/agronomy11122547] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
20 Rasool F, Uzair M, Naeem MK, Rehman N, Afroz A, Shah H, Khan MR. Phenylalanine Ammonia-Lyase (PAL) Genes Family in Wheat (Triticum aestivum L.): Genome-Wide Characterization and Expression Profiling. Agronomy 2021;11:2511. [DOI: 10.3390/agronomy11122511] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
21 Wen Y, Raza A, Chu W, Zou X, Cheng H, Hu Q, Liu J, Wei W. Comprehensive In Silico Characterization and Expression Profiling of TCP Gene Family in Rapeseed. Front Genet 2021;12:794297. [PMID: 34868279 DOI: 10.3389/fgene.2021.794297] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Raza A, Tabassum J, Mubarik MS, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H. Hydrogen sulfide: an emerging component against abiotic stress in plants. Plant Biol (Stuttg) 2021. [PMID: 34870354 DOI: 10.1111/plb.13368] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]