BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Caplin N, Willey N. Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. Front Plant Sci 2018;9:847. [PMID: 29997637 DOI: 10.3389/fpls.2018.00847] [Cited by in Crossref: 41] [Cited by in F6Publishing: 24] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Mousseau TA, Møller AP. Plants in the Light of Ionizing Radiation: What Have We Learned From Chernobyl, Fukushima, and Other "Hot" Places? Front Plant Sci 2020;11:552. [PMID: 32457784 DOI: 10.3389/fpls.2020.00552] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
2 Gudkov SV, Grinberg MA, Sukhov V, Vodeneev V. Effect of ionizing radiation on physiological and molecular processes in plants. J Environ Radioact 2019;202:8-24. [PMID: 30772632 DOI: 10.1016/j.jenvrad.2019.02.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 10] [Article Influence: 11.7] [Reference Citation Analysis]
3 Choi HI, Han SM, Jo YD, Hong MJ, Kim SH, Kim JB. Effects of Acute and Chronic Gamma Irradiation on the Cell Biology and Physiology of Rice Plants. Plants (Basel) 2021;10:439. [PMID: 33669039 DOI: 10.3390/plants10030439] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Desiderio A, Salzano AM, Scaloni A, Massa S, Pimpinella M, De Coste V, Pioli C, Nardi L, Benvenuto E, Villani ME. Effects of Simulated Space Radiations on the Tomato Root Proteome. Front Plant Sci 2019;10:1334. [PMID: 31708949 DOI: 10.3389/fpls.2019.01334] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
5 Amirikhah R, Etemadi N, Sabzalian MR, Nikbakht A, Eskandari A. Gamma radiation negatively impacted seed germination, seedling growth and antioxidant enzymes activities in tall fescue infected with Epichloë endophyte. Ecotoxicol Environ Saf 2021;216:112169. [PMID: 33826977 DOI: 10.1016/j.ecoenv.2021.112169] [Reference Citation Analysis]
6 Kiani D, Borzouei A, Ramezanpour S, Soltanloo H, Saadati S. Application of gamma irradiation on morphological, biochemical, and molecular aspects of wheat (Triticum aestivum L.) under different seed moisture contents. Sci Rep 2022;12:11082. [PMID: 35773375 DOI: 10.1038/s41598-022-14949-6] [Reference Citation Analysis]
7 Lee SW, Kwon YJ, Baek I, Choi HI, Ahn JW, Kim JB, Kang SY, Kim SH, Jo YD. Mutagenic Effect of Proton Beams Characterized by Phenotypic Analysis and Whole Genome Sequencing in Arabidopsis. Front Plant Sci 2021;12:752108. [PMID: 34777430 DOI: 10.3389/fpls.2021.752108] [Reference Citation Analysis]
8 Song KE, Park CY, Hong SH, Chung JI, Kim MC, Shim SI. Beneficial effects of gamma-irradiation of quinoa seeds on germination and growth. Radiat Environ Biophys 2022. [PMID: 35833987 DOI: 10.1007/s00411-022-00986-2] [Reference Citation Analysis]
9 Volkova PY, Duarte GT, Kazakova EA, Makarenko ES, Bitarishvili SV, Bondarenko VS, Perevolotskii AN, Geras'kin SA, Garbaruk DK, Turchin LM. Radiosensitivity of herbaceous plants to chronic radiation exposure: Field study in the Chernobyl exclusion zone. Science of The Total Environment 2021;777:146206. [DOI: 10.1016/j.scitotenv.2021.146206] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
10 Grinberg MA, Gudkov SV, Balalaeva IV, Gromova E, Sinitsyna Y, Sukhov V, Vodeneev V. Effect of chronic β-radiation on long-distance electrical signals in wheat and their role in adaptation to heat stress. Environmental and Experimental Botany 2021;184:104378. [DOI: 10.1016/j.envexpbot.2021.104378] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
11 Pernis M, Skultety L, Shevchenko V, Klubicova K, Rashydov N, Danchenko M. Soybean recovery from stress imposed by multigenerational growth in contaminated Chernobyl environment. J Plant Physiol 2020;251:153219. [PMID: 32563765 DOI: 10.1016/j.jplph.2020.153219] [Reference Citation Analysis]
12 Hussein HA, Alshammari SO, Elkady FM, Ramadan AA, Kenawy SKM, Abdelkawy AM. Radio-Protective Effects of Stigmasterol on Wheat (Triticum aestivum L.) Plants. Antioxidants (Basel) 2022;11:1144. [PMID: 35740045 DOI: 10.3390/antiox11061144] [Reference Citation Analysis]
13 Klimenko O, Pernis M, Danchenko M, Skultéty L, Klubicová K, Shevchenko G. Natural ecotype of Arabidopsis thaliana (L.) Heynh (Chernobyl-07) respond to cadmium stress more intensively than the sensitive ecotypes Oasis and Columbia. Ecotoxicol Environ Saf 2019;173:86-95. [PMID: 30769207 DOI: 10.1016/j.ecoenv.2019.02.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
14 Blagojevic D, Lee Y, Brede DA, Lind OC, Yakovlev I, Solhaug KA, Fossdal CG, Salbu B, Olsen JE. Comparative sensitivity to gamma radiation at the organismal, cell and DNA level in young plants of Norway spruce, Scots pine and Arabidopsis thaliana. Planta 2019;250:1567-90. [PMID: 31372744 DOI: 10.1007/s00425-019-03250-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
15 De Micco V, De Francesco S, Amitrano C, Arena C. Comparative Analysis of the Effect of Carbon- and Titanium-Ions Irradiation on Morpho-Anatomical and Biochemical Traits of Dolichos melanophthalmus DC. Seedlings Aimed to Space Exploration. Plants (Basel) 2021;10:2272. [PMID: 34834635 DOI: 10.3390/plants10112272] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Koval L, Proshkina E, Shaposhnikov M, Moskalev A. The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional. Biogerontology 2020;21:45-56. [PMID: 31624983 DOI: 10.1007/s10522-019-09842-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
17 Ziyadi S, Iddar A, Kabine M, El Mzibri M, Moutaouakkil A. Changes in Growth, Morphology, and Physiology of Tetrahymena pyriformis Exposed to Continuous Cesium-137 and Cobalt-60 Gamma-Radiation. Curr Microbiol 2022;79:61. [PMID: 34982197 DOI: 10.1007/s00284-021-02684-6] [Reference Citation Analysis]
18 Ludovici GM, Oliveira de Souza S, Chierici A, Cascone MG, d'Errico F, Malizia A. Adaptation to ionizing radiation of higher plants: From environmental radioactivity to chernobyl disaster. J Environ Radioact 2020;222:106375. [PMID: 32791372 DOI: 10.1016/j.jenvrad.2020.106375] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Duarte GT, Volkova PY, Geras'kin SA. The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from Chernobyl affected zone. Environ Pollut 2019;250:618-26. [PMID: 31035144 DOI: 10.1016/j.envpol.2019.04.064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
20 Belykh ES, Velegzhaninov IO, Garmash EV. Responses of genes of DNA repair, alternative oxidase, and pro-/antioxidant state in Arabidopsis thaliana with altered expression of AOX1a to gamma irradiation. Int J Radiat Biol 2022;98:60-8. [PMID: 34714725 DOI: 10.1080/09553002.2022.1998712] [Reference Citation Analysis]
21 Hong MJ, Kim DY, Jo YD, Choi H, Ahn J, Kwon S, Kim SH, Seo YW, Kim J. Biological Effect of Gamma Rays According to Exposure Time on Germination and Plant Growth in Wheat. Applied Sciences 2022;12:3208. [DOI: 10.3390/app12063208] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Jovtchev G, Stankov A, Ravnachka I, Gateva S, Dimitrov D, Tyutyundzhiev N, Nikolova N, Angelov C. How can the natural radiation background affect DNA integrity in angiosperm plant species at different altitudes in Rila Mountain (Southwest Bulgaria)? Environ Sci Pollut Res Int 2019;26:13592-601. [PMID: 30919184 DOI: 10.1007/s11356-019-04872-1] [Reference Citation Analysis]
23 Ganther M, Yim B, Ibrahim Z, Bienert MD, Lippold E, Maccario L, Sørensen SJ, Bienert GP, Vetterlein D, Heintz-buschart A, Blagodatskaya E, Smalla K, Tarkka MT, Gifford M. Compatibility of X-ray computed tomography with plant gene expression, rhizosphere bacterial communities and enzyme activities. Journal of Experimental Botany 2020;71:5603-14. [DOI: 10.1093/jxb/eraa262] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
24 Chang S, Lee U, Hong MJ, Jo YD, Kim JB. High-Throughput Phenotyping (HTP) Data Reveal Dosage Effect at Growth Stages in Arabidopsis thaliana Irradiated by Gamma Rays. Plants (Basel) 2020;9:E557. [PMID: 32349236 DOI: 10.3390/plants9050557] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
25 Beresford N, Horemans N, Copplestone D, Raines K, Orizaola G, Wood M, Laanen P, Whitehead H, Burrows J, Tinsley M, Smith J, Bonzom J, Gagnaire B, Adam-guillermin C, Gashchak S, Jha A, de Menezes A, Willey N, Spurgeon D. Towards solving a scientific controversy – The effects of ionising radiation on the environment. Journal of Environmental Radioactivity 2020;211:106033. [DOI: 10.1016/j.jenvrad.2019.106033] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
26 Caplin NM, Halliday A, Willey NJ. Developmental, Morphological and Physiological Traits in Plants Exposed for Five Generations to Chronic Low-Level Ionising Radiation. Front Plant Sci 2020;11:389. [PMID: 32351521 DOI: 10.3389/fpls.2020.00389] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Babina D, Podobed M, Bondarenko E, Kazakova E, Bitarishvili S, Podlutskii M, Mitsenyk A, Prazyan A, Gorbatova I, Shesterikova E, Volkova P. Seed Gamma Irradiation of Arabidopsis thaliana ABA-Mutant Lines Alters Germination and Does Not Inhibit the Photosynthetic Efficiency of Juvenile Plants. Dose Response 2020;18:1559325820979249. [PMID: 33456412 DOI: 10.1177/1559325820979249] [Reference Citation Analysis]
28 Ogwu MC, Srinivasan S, Dong K, Ramasamy D, Waldman B, Adams JM. Community Ecology of Deinococcus in Irradiated Soil. Microb Ecol 2019;78:855-72. [DOI: 10.1007/s00248-019-01343-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
29 Sanli S, Dalkiliç Z. Determination of Effective Mutation Dose on Walnut (Juglans regia L. cv. Chandler) Budwoods. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi. [DOI: 10.25308/aduziraat.859402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Mohamed EA, Harbi HFAL, Aref N. Radioprotective efficacy of zinc oxide nanoparticles on γ-ray-induced nuclear DNA damage in Vicia faba L. as evaluated by DNA bioassays. Journal of Radiation Research and Applied Sciences 2019;12:423-36. [DOI: 10.1080/16878507.2019.1690798] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
31 Blagojevic D, Lee Y, Xie L, Brede DA, Nybakken L, Lind OC, Tollefsen KE, Salbu B, Solhaug KA, Olsen JE. No evidence of a protective or cumulative negative effect of UV-B on growth inhibition induced by gamma radiation in Scots pine (Pinus sylvestris) seedlings. Photochem Photobiol Sci 2019;18:1945-62. [PMID: 31305802 DOI: 10.1039/c8pp00491a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Geras'kin S, Volkova P, Vasiliyev D, Dikareva N, Oudalova A, Kazakova E, Makarenko E, Duarte G, Kuzmenkov A. Scots pine as a promising indicator organism for biomonitoring of the polluted environment: A case study on chronically irradiated populations. Mutat Res Genet Toxicol Environ Mutagen 2019;842:3-13. [PMID: 31255224 DOI: 10.1016/j.mrgentox.2018.12.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
33 L M, S A, Menon SK. A novel and effective technique to reduce electromagnetic radiation absorption on biotic components at 2.45 GHz. Electromagn Biol Med 2022;:1-17. [PMID: 35352614 DOI: 10.1080/15368378.2022.2046048] [Reference Citation Analysis]
34 Kryvokhyzha MV, Krutovsky KV, Rashydov NM. Differential expression of flowering genes in Arabidopsis thaliana under chronic and acute ionizing radiation. Int J Radiat Biol 2019;95:626-34. [PMID: 30570374 DOI: 10.1080/09553002.2019.1562251] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
35 Colak N, Kurt-Celebi A, Fauzan R, Torun H, Ayaz FA. The protective effect of exogenous salicylic and gallic acids ameliorates the adverse effects of ionizing radiation stress in wheat seedlings by modulating the antioxidant defence system. Plant Physiol Biochem 2021;168:526-45. [PMID: 34826704 DOI: 10.1016/j.plaphy.2021.10.020] [Reference Citation Analysis]
36 Zhang Y, Richards JT, Feiveson AH, Richards SE, Neelam S, Dreschel TW, Plante I, Hada M, Wu H, Massa GD, Douglas GL, Levine HG. Response of Arabidopsis thaliana and Mizuna Mustard Seeds to Simulated Space Radiation Exposures. Life 2022;12:144. [DOI: 10.3390/life12020144] [Reference Citation Analysis]
37 Pradhan B, Baral S, Patra S, Behera C, Nayak R, Mubarakali D, Jena M. Delineation of gamma irradiation (60Co) induced oxidative stress by decrypting antioxidants and biochemical responses of microalga, Chlorella sp. Biocatalysis and Agricultural Biotechnology 2020;25:101595. [DOI: 10.1016/j.bcab.2020.101595] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
38 Husseini ZN, Hosseini Tafreshi SA, Aghaie P, Toghyani MA. CaCl2 pretreatment improves gamma toxicity tolerance in microalga Chlorella vulgaris. Ecotoxicology and Environmental Safety 2020;192:110261. [DOI: 10.1016/j.ecoenv.2020.110261] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
39 Stephan OOH. Implications of ionizing radiation on pollen performance in comparison with diverse models of polar cell growth. Plant Cell Environ 2021;44:665-91. [PMID: 33124689 DOI: 10.1111/pce.13929] [Reference Citation Analysis]
40 Shimalina NS, Antonova EV, Pozolotina VN. Genetic polymorphism of Plantago major populations from the radioactive and chemical polluted areas. Environ Pollut 2020;257:113607. [PMID: 31767232 DOI: 10.1016/j.envpol.2019.113607] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
41 Thien BN, Ba VN, Vy NTT, Loan TTH. Estimation of the soil to plant transfer factor and the annual organ equivalent dose due to ingestion of food crops in Ho Chi Minh city, Vietnam. Chemosphere 2020;259:127432. [DOI: 10.1016/j.chemosphere.2020.127432] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]