BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sorriento D, Di Vaia E, Iaccarino G. Physical Exercise: A Novel Tool to Protect Mitochondrial Health. Front Physiol 2021;12:660068. [PMID: 33986694 DOI: 10.3389/fphys.2021.660068] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Collie S, Saggers RT, Bandini R, Steenkamp L, Champion J, Gray G, Bekker LG, Goga A, Garrett N, Patricios J. Association between regular physical activity and the protective effect of vaccination against SARS-CoV-2 in a South African case-control study. Br J Sports Med 2023;57:205-11. [PMID: 36280289 DOI: 10.1136/bjsports-2022-105734] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
2 Livshits G, Kalinkovich A. A Cross-talk between Sestrins, Chronic Inflammation and Cellular Senescence Governs the Development of Age-associated Sarcopenia and Obesity. Ageing Res Rev 2023;:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Reference Citation Analysis]
3 Deledda A, Giordano E, Velluzzi F, Flore G, Franceschelli S, Speranza L, Ripari P. Mitochondrial Aging and Senolytic Natural Products with Protective Potential. Int J Mol Sci 2022;23. [PMID: 36555859 DOI: 10.3390/ijms232416219] [Reference Citation Analysis]
4 Magaña JC, Deus CM, Giné-Garriga M, Montané J, Pereira SP. Exercise-Boosted Mitochondrial Remodeling in Parkinson's Disease. Biomedicines 2022;10. [PMID: 36551984 DOI: 10.3390/biomedicines10123228] [Reference Citation Analysis]
5 Domin R, Pytka M, Niziński J, Żołyński M, Zybek-Kocik A, Wrotkowska E, Zieliński J, Guzik P, Ruchała M. ATPase Inhibitory Factor 1-A Novel Marker of Cellular Fitness and Exercise Capacity? Int J Mol Sci 2022;23. [PMID: 36499630 DOI: 10.3390/ijms232315303] [Reference Citation Analysis]
6 Mathis BJ, Kato H, Hiramatsu Y. Induction of Cardiac Pathology: Endogenous versus Exogenous Nrf2 Upregulation. Cells 2022;11. [PMID: 36497112 DOI: 10.3390/cells11233855] [Reference Citation Analysis]
7 van de Haterd B, Verboven K, Vandenabeele F, Agten A. The Role of Skeletal Muscle Mitochondria in Colorectal Cancer Related Cachexia: Friends or Foes? Int J Mol Sci 2022;23. [PMID: 36499157 DOI: 10.3390/ijms232314833] [Reference Citation Analysis]
8 Guntur VP, Nemkov T, de Boer E, Mohning MP, Baraghoshi D, Cendali FI, San-millán I, Petrache I, D’alessandro A. Signatures of Mitochondrial Dysfunction and Impaired Fatty Acid Metabolism in Plasma of Patients with Post-Acute Sequelae of COVID-19 (PASC). Metabolites 2022;12:1026. [DOI: 10.3390/metabo12111026] [Reference Citation Analysis]
9 Fanton M, Harari Y, Giffhorn M, Lynott A, Alshan E, Mendley J, Czerwiec M, Macaluso R, Ideses I, Oks E, Jayaraman A. Validation of Amazon Halo Movement: a smartphone camera-based assessment of movement health. NPJ Digit Med 2022;5:134. [PMID: 36065060 DOI: 10.1038/s41746-022-00684-9] [Reference Citation Analysis]
10 Li J, Wang Z, Li C, Song Y, Wang Y, Bo H, Zhang Y. Impact of Exercise and Aging on Mitochondrial Homeostasis in Skeletal Muscle: Roles of ROS and Epigenetics. Cells 2022;11:2086. [DOI: 10.3390/cells11132086] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Blagov AV, Grechko AV, Nikiforov NG, Borisov EE, Sadykhov NK, Orekhov AN. Role of Impaired Mitochondrial Dynamics Processes in the Pathogenesis of Alzheimer’s Disease. IJMS 2022;23:6954. [DOI: 10.3390/ijms23136954] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
12 Bradley P. Hypothesis: Enhanced glucose availability and insulin resistance enhances an activated immune system and accounts for the obesity paradox. Clinical Obesity. [DOI: 10.1111/cob.12521] [Reference Citation Analysis]
13 Martínez-Guardado I, Arboleya S, Grijota FJ, Kaliszewska A, Gueimonde M, Arias N. The Therapeutic Role of Exercise and Probiotics in Stressful Brain Conditions. Int J Mol Sci 2022;23:3610. [PMID: 35408972 DOI: 10.3390/ijms23073610] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Jîtcă G, Ősz BE, Tero-Vescan A, Miklos AP, Rusz CM, Bătrînu MG, Vari CE. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants (Basel) 2022;11:572. [PMID: 35326222 DOI: 10.3390/antiox11030572] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
15 Chung KH, Park SB, Streckmann F, Wiskemann J, Mohile N, Kleckner AS, Colloca L, Dorsey SG, Kleckner IR. Mechanisms, Mediators, and Moderators of the Effects of Exercise on Chemotherapy-Induced Peripheral Neuropathy. Cancers 2022;14:1224. [DOI: 10.3390/cancers14051224] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
16 Fernström J, Mellon SH, McGill MA, Picard M, Reus VI, Hough CM, Lin J, Epel ES, Wolkowitz OM, Lindqvist D. Blood-based mitochondrial respiratory chain function in major depression. Transl Psychiatry 2021;11:593. [PMID: 34789750 DOI: 10.1038/s41398-021-01723-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Zhang X, Gao F. Exercise improves vascular health: Role of mitochondria. Free Radic Biol Med 2021;177:347-59. [PMID: 34748911 DOI: 10.1016/j.freeradbiomed.2021.11.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Taherkhani S, Valaei K, Arazi H, Suzuki K. An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants (Basel) 2021;10:1528. [PMID: 34679663 DOI: 10.3390/antiox10101528] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]