BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sundell KS, Sundh H. Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins. Front Physiol 2012;3:388. [PMID: 23060812 DOI: 10.3389/fphys.2012.00388] [Cited by in Crossref: 61] [Cited by in F6Publishing: 50] [Article Influence: 6.1] [Reference Citation Analysis]
Number Citing Articles
1 Tipsmark CK, Nielsen AM, Bossus MC, Ellis LV, Baun C, Andersen TL, Dreier J, Brewer JR, Madsen SS. Drinking and Water Handling in the Medaka Intestine: A Possible Role of Claudin-15 in Paracellular Absorption? Int J Mol Sci 2020;21:E1853. [PMID: 32182691 DOI: 10.3390/ijms21051853] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Padra JT, Sundh H, Sundell K, Venkatakrishnan V, Jin C, Samuelsson T, Karlsson NG, Lindén SK. Aeromonas salmonicida Growth in Response to Atlantic Salmon Mucins Differs between Epithelial Sites, Is Governed by Sialylated and N-Acetylhexosamine-Containing O-Glycans, and Is Affected by Ca2. Infect Immun 2017;85:e00189-17. [PMID: 28533470 DOI: 10.1128/IAI.00189-17] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
3 Bossus MC, Madsen SS, Tipsmark CK. Functional dynamics of claudin expression in Japanese medaka (Oryzias latipes): Response to environmental salinity. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2015;187:74-85. [DOI: 10.1016/j.cbpa.2015.04.017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
4 Sundh H, Sundell KS. Environmental impacts on fish mucosa. Mucosal Health in Aquaculture. Elsevier; 2015. pp. 171-97. [DOI: 10.1016/b978-0-12-417186-2.00007-8] [Cited by in Crossref: 7] [Article Influence: 1.0] [Reference Citation Analysis]
5 Alves RN, Sundell KS, Anjos L, Sundh H, Harboe T, Norberg B, Power DM. Structural and functional maturation of skin during metamorphosis in the Atlantic halibut (Hippoglossus hippoglossus). Cell Tissue Res 2018;372:469-92. [PMID: 29464365 DOI: 10.1007/s00441-018-2794-1] [Reference Citation Analysis]
6 Sundh H, Nilsen TO, Lindström J, Hasselberg-Frank L, Stefansson SO, McCormick SD, Sundell K. Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar. J Fish Biol 2014;85:1227-52. [PMID: 25263190 DOI: 10.1111/jfb.12531] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
7 Sundh H, Finne-fridell F, Ellis T, Taranger G, Niklasson L, Pettersen E, Wergeland H, Sundell K. Reduced water quality associated with higher stocking density disturbs the intestinal barrier functions of Atlantic salmon (Salmo salar L.). Aquaculture 2019;512:734356. [DOI: 10.1016/j.aquaculture.2019.734356] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
8 Rosengren M, Thörnqvist P, Winberg S, Sundell K. The brain-gut axis of fish: Rainbow trout with low and high cortisol response show innate differences in intestinal integrity and brain gene expression. General and Comparative Endocrinology 2018;257:235-45. [DOI: 10.1016/j.ygcen.2017.09.020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
9 Shen Y, Li H, Zhao J, Tang S, Zhao Y, Gu Y, Chen X. Genomic and expression characterization of aquaporin genes from Siniperca chuatsi. Comp Biochem Physiol Part D Genomics Proteomics 2021;38:100819. [PMID: 33652294 DOI: 10.1016/j.cbd.2021.100819] [Reference Citation Analysis]
10 Sundh H, Gräns A, Brijs J, Sandblom E, Axelsson M, Berg C, Sundell K. Effects of coeliacomesenteric blood flow reduction on intestinal barrier function in rainbow trout Oncorhynchus mykiss. J Fish Biol 2018;93:519-27. [PMID: 29934951 DOI: 10.1111/jfb.13658] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
11 Sundell K, Wrange AL, Jonsson PR, Blomberg A. Osmoregulation in Barnacles: An Evolutionary Perspective of Potential Mechanisms and Future Research Directions. Front Physiol 2019;10:877. [PMID: 31496949 DOI: 10.3389/fphys.2019.00877] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Madsen SS, Bollinger RJ, Brauckhoff M, Engelund MB. Gene expression profiling of proximal and distal renal tubules in Atlantic salmon (Salmo salar) acclimated to fresh water and seawater. Am J Physiol Renal Physiol 2020;319:F380-93. [PMID: 32628538 DOI: 10.1152/ajprenal.00557.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
13 Minghetti M, Drieschner C, Bramaz N, Schug H, Schirmer K. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biol Toxicol 2017;33:539-55. [PMID: 28251411 DOI: 10.1007/s10565-017-9385-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
14 Ašmonaitė G, Sundh H, Asker N, Carney Almroth B. Rainbow Trout Maintain Intestinal Transport and Barrier Functions Following Exposure to Polystyrene Microplastics. Environ Sci Technol 2018;52:14392-401. [DOI: 10.1021/acs.est.8b04848] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 7.8] [Reference Citation Analysis]
15 Benktander J, Sundh H, Sundell K, Murugan AVM, Venkatakrishnan V, Padra JT, Kolarevic J, Terjesen BF, Gorissen M, Lindén SK. Stress Impairs Skin Barrier Function and Induces α2-3 Linked N-Acetylneuraminic Acid and Core 1 O-Glycans on Skin Mucins in Atlantic Salmon, Salmo salar. Int J Mol Sci 2021;22:1488. [PMID: 33540792 DOI: 10.3390/ijms22031488] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Nemova NN, Nefedova ZA, Pekkoeva SN, Voronin VP, Shulgina NS, Churova MV, Murzina SA. The Effect of the Photoperiod on the Fatty Acid Profile and Weight in Hatchery-Reared Underyearlings and Yearlings of Atlantic Salmon Salmo salar L. Biomolecules 2020;10:E845. [PMID: 32498392 DOI: 10.3390/biom10060845] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Kwong RW, Kumai Y, Perry SF. The role of aquaporin and tight junction proteins in the regulation of water movement in larval zebrafish (Danio rerio). PLoS One 2013;8:e70764. [PMID: 23967101 DOI: 10.1371/journal.pone.0070764] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
18 Yang P, Hu H, Liu Y, Li Y, Ai Q, Xu W, Zhang W, Zhang Y, Zhang Y, Mai K. Dietary stachyose altered the intestinal microbiota profile and improved the intestinal mucosal barrier function of juvenile turbot, Scophthalmus maximus L. Aquaculture 2018;486:98-106. [DOI: 10.1016/j.aquaculture.2017.12.014] [Cited by in Crossref: 38] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
19 de Gelder S, Sundh H, Pelgrim TN, Rasinger JD, van Daal L, Flik G, Berntssen MH, Klaren PH. Transepithelial transfer of phenanthrene, but not of benzo[ a ]pyrene, is inhibited by fatty acids in the proximal intestine of rainbow trout ( Oncorhynchus mykiss ). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2018;204:97-105. [DOI: 10.1016/j.cbpc.2017.11.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
20 Wang J, Kortner TM, Chikwati EM, Li Y, Jaramillo-Torres A, Jakobsen JV, Ravndal J, Brevik ØJ, Einen O, Krogdahl Å. Gut immune functions and health in Atlantic salmon (Salmo salar) from late freshwater stage until one year in seawater and effects of functional ingredients: A case study from a commercial sized research site in the Arctic region. Fish Shellfish Immunol 2020;106:1106-19. [PMID: 32941976 DOI: 10.1016/j.fsi.2020.09.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Brijs J, Sandblom E, Axelsson M, Sundell K, Sundh H, Kiessling A, Berg C, Gräns A. Remote physiological monitoring provides unique insights on the cardiovascular performance and stress responses of freely swimming rainbow trout in aquaculture. Sci Rep 2019;9:9090. [PMID: 31235773 DOI: 10.1038/s41598-019-45657-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
22 Yang WK, Hsu AD, Kang CK, Lai IP, Liao PS, Lee TH. Intestinal FXYD12 and sodium-potassium ATPase: A comparative study on two euryhaline medakas in response to salinity changes. PLoS One 2018;13:e0201252. [PMID: 30052675 DOI: 10.1371/journal.pone.0201252] [Reference Citation Analysis]
23 Zhao Q, Chen YY, Xu DQ, Yue SJ, Fu RJ, Yang J, Xing LM, Tang YP. Action Mode of Gut Motility, Fluid and Electrolyte Transport in Chronic Constipation. Front Pharmacol 2021;12:630249. [PMID: 34385914 DOI: 10.3389/fphar.2021.630249] [Reference Citation Analysis]
24 Rosengren M, Kvingedal E, Näslund J, Johnsson JI, Sundell K. Born to be wild: effects of rearing density and environmental enrichment on stress, welfare, and smolt migration in hatchery-reared Atlantic salmon. Can J Fish Aquat Sci 2017;74:396-405. [DOI: 10.1139/cjfas-2015-0515] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 6.6] [Reference Citation Analysis]
25 Shaughnessy CA, Breves JP. Molecular mechanisms of Cl transport in fishes: New insights and their evolutionary context. J Exp Zool 2021;335:207-16. [DOI: 10.1002/jez.2428] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
26 Breves JP. Hormonal regulation of aquaporins in fishes. Vitam Horm 2020;112:265-87. [PMID: 32061344 DOI: 10.1016/bs.vh.2019.10.002] [Reference Citation Analysis]
27 Abro R, Sundell K, Sandblom E, Sundh H, Brännäs E, Kiessling A, Lindberg JE, Lundh T. Evaluation of chitinolytic activities and membrane integrity in gut tissues of Arctic charr (Salvelinus alpinus) fed fish meal and zygomycete biomass. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2014;175:1-8. [DOI: 10.1016/j.cbpb.2014.06.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
28 Vidakovic A, Langeland M, Sundh H, Sundell K, Olstorpe M, Vielma J, Kiessling A, Lundh T. Evaluation of growth performance and intestinal barrier function in Arctic Charr ( Salvelinus alpinus ) fed yeast ( Saccharomyces cerevisiae ), fungi ( Rhizopus oryzae ) and blue mussel ( Mytilus edulis ). Aquacult Nutr 2016;22:1348-60. [DOI: 10.1111/anu.12344] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
29 Murzina SA, Nefedova ZA, Pekkoeva SN, Veselov AE, Ruch’ev MA, Nemova NN. Fatty Acid Status of Freshwater Resident and Anadromous Forms of Young Brown Trout (Salmo trutta L.). Contemp Probl Ecol 2018;11:320-4. [DOI: 10.1134/s1995425518030083] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Sundell E, Morgenroth D, Brijs J, Ekström A, Gräns A, Sandblom E. Seawater acclimation affects cardiac output and adrenergic control of blood pressure in rainbow trout (Oncorhynchus mykiss)-implications for salinity variations now and in the future. Conserv Physiol 2018;6:coy061. [PMID: 30483401 DOI: 10.1093/conphys/coy061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
31 Sillanpää JK, Cardoso JCDR, Félix RC, Anjos L, Power DM, Sundell K. Dilution of Seawater Affects the Ca2 + Transport in the Outer Mantle Epithelium of Crassostrea gigas. Front Physiol 2020;11:1. [PMID: 32038307 DOI: 10.3389/fphys.2020.00001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Martin SA, Dehler CE, Król E. Transcriptomic responses in the fish intestine. Dev Comp Immunol 2016;64:103-17. [PMID: 26995769 DOI: 10.1016/j.dci.2016.03.014] [Cited by in Crossref: 60] [Cited by in F6Publishing: 51] [Article Influence: 10.0] [Reference Citation Analysis]
33 Lind U, Järvå M, Alm Rosenblad M, Pingitore P, Karlsson E, Wrange AL, Kamdal E, Sundell K, André C, Jonsson PR, Havenhand J, Eriksson LA, Hedfalk K, Blomberg A. Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity. PLoS One 2017;12:e0181192. [PMID: 28715506 DOI: 10.1371/journal.pone.0181192] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
34 Hu H, Kortner TM, Gajardo K, Chikwati E, Tinsley J, Krogdahl Å. Intestinal Fluid Permeability in Atlantic Salmon (Salmo salar L.) Is Affected by Dietary Protein Source. PLoS One 2016;11:e0167515. [PMID: 27907206 DOI: 10.1371/journal.pone.0167515] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
35 Cao Q, Blondeau-Bidet E, Lorin-Nebel C. Intestinal osmoregulatory mechanisms differ in Mediterranean and Atlantic European sea bass: A focus on hypersalinity. Sci Total Environ 2022;804:150208. [PMID: 34798741 DOI: 10.1016/j.scitotenv.2021.150208] [Reference Citation Analysis]
36 Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. Zoological Lett 2021;7:10. [PMID: 34154668 DOI: 10.1186/s40851-021-00175-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Sun Y, Reid B, Ferreira F, Luxardi G, Ma L, Lokken KL, Zhu K, Xu G, Sun Y, Ryzhuk V, Guo BP, Lebrilla CB, Maverakis E, Mogilner A, Zhao M. Infection-generated electric field in gut epithelium drives bidirectional migration of macrophages. PLoS Biol 2019;17:e3000044. [PMID: 30964858 DOI: 10.1371/journal.pbio.3000044] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
38 Takvam M, Wood CM, Kryvi H, Nilsen TO. Ion Transporters and Osmoregulation in the Kidney of Teleost Fishes as a Function of Salinity. Front Physiol 2021;12:664588. [PMID: 33967835 DOI: 10.3389/fphys.2021.664588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Engelund MB, Chauvigné F, Christensen BM, Finn RN, Cerdà J, Madsen SS. Differential expression and novel permeability properties of three aquaporin 8 paralogs from seawater-challenged Atlantic salmon smolts. Journal of Experimental Biology. [DOI: 10.1242/jeb.087890] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.2] [Reference Citation Analysis]
40 Sillanpää JK, Sundh H, Sundell KS. Calcium transfer across the outer mantle epithelium in the Pacific oyster, Crassostrea gigas. Proc Biol Sci 2018;285:20181676. [PMID: 30429301 DOI: 10.1098/rspb.2018.1676] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
41 Breves JP, Popp EE, Rothenberg EF, Rosenstein CW, Maffett KM, Guertin RR. Osmoregulatory actions of prolactin in the gastrointestinal tract of fishes. Gen Comp Endocrinol 2020;298:113589. [PMID: 32827513 DOI: 10.1016/j.ygcen.2020.113589] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
42 Langan LM, Owen SF, Jha AN. Establishment and long-term maintenance of primary intestinal epithelial cells cultured from the rainbow trout, Oncorhynchus mykiss. Biol Open 2018;7:bio032870. [PMID: 29514825 DOI: 10.1242/bio.032870] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
43 Brijs J, Sandblom E, Sundh H, Gräns A, Hinchcliffe J, Ekström A, Sundell K, Olsson C, Axelsson M, Pichaud N. Increased mitochondrial coupling and anaerobic capacity minimizes aerobic costs of trout in the sea. Sci Rep 2017;7:45778. [PMID: 28361996 DOI: 10.1038/srep45778] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
44 Albrektsen S, Lock E, Baeverfjord G, Pedersen M, Krasnov A, Takle H, Veiseth-kent E, Ørnsrud R, Waagbø R, Ytteborg E. Utilization of H 2 SO 4 -hydrolysed phosphorus from herring bone by-products in feed for Atlantic salmon ( Salmo salar ) 0 + postsmolt. Aquacult Nutr 2018;24:348-65. [DOI: 10.1111/anu.12566] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Barany A, Shaughnessy CA, Pelis RM, Fuentes J, Mancera JM, McCormick SD. Tissue and salinity specific Na+/Cl- cotransporter (NCC) orthologues involved in the adaptive osmoregulation of sea lamprey (Petromyzon marinus). Sci Rep 2021;11:22698. [PMID: 34811419 DOI: 10.1038/s41598-021-02125-1] [Reference Citation Analysis]
46 Verri T, Barca A, Pisani P, Piccinni B, Storelli C, Romano A. Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2017;187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
47 Syakuri H, Jung-schroers V, Adamek M, Brogden G, Irnazarow I, Steinhagen D. Beta-glucan feeding differentiated the regulation of mRNA expression of claudin genes and prevented an intestinal inflammatory response post Aeromonas hydrophila intubation in common carp, Cyprinus carpio L. J Fish Dis 2014;37:149-56. [DOI: 10.1111/jfd.12121] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
48 Schug H, Begnaud F, Debonneville C, Berthaud F, Gimeno S, Schirmer K. TransFEr: a new device to measure the transfer of volatile and hydrophobic organic chemicals across an in vitro intestinal fish cell barrier. Anal Methods 2018;10:4394-403. [DOI: 10.1039/c8ay01253a] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
49 Takvam M, Denker E, Gharbi N, Kryvi H, Nilsen TO. Sulfate homeostasis in Atlantic salmon is associated with differential regulation of salmonid-specific paralogs in gill and kidney. Physiol Rep 2021;9:e15059. [PMID: 34617680 DOI: 10.14814/phy2.15059] [Reference Citation Analysis]
50 Barany A, Gilannejad N, Alameda-López M, Rodríguez-Velásquez L, Astola A, Martínez-Rodríguez G, Roo J, Muñoz JL, Mancera JM. Osmoregulatory Plasticity of Juvenile Greater Amberjack (Seriola dumerili) to Environmental Salinity. Animals (Basel) 2021;11:2607. [PMID: 34573573 DOI: 10.3390/ani11092607] [Reference Citation Analysis]
51 Venkatakrishnan V, Padra JT, Sundh H, Sundell K, Jin C, Langeland M, Carlberg H, Vidakovic A, Lundh T, Karlsson NG, Lindén SK. Exploring the Arctic Charr Intestinal Glycome: Evidence of Increased N-Glycolylneuraminic Acid Levels and Changed Host-Pathogen Interactions in Response to Inflammation. J Proteome Res 2019;18:1760-73. [PMID: 30848132 DOI: 10.1021/acs.jproteome.8b00973] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
52 Madsen SS, Bujak J, Tipsmark CK. Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport? J Exp Biol 2014;217:3108-21. [PMID: 24948644 DOI: 10.1242/jeb.105098] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
53 Sun C, Li J, Dong J, Niu Y, Hu J, Lian J, Li W, Li J, Tian Y, Shi Q, Ye X. Chromosome-level genome assembly for the largemouth bass Micropterus salmoides provides insights into adaptation to fresh and brackish water. Mol Ecol Resour 2021;21:301-15. [PMID: 32985096 DOI: 10.1111/1755-0998.13256] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
54 Sjöberg Å, Lutz M, Tannergren C, Wingolf C, Borde A, Ungell A. Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. European Journal of Pharmaceutical Sciences 2013;48:166-80. [DOI: 10.1016/j.ejps.2012.10.007] [Cited by in Crossref: 124] [Cited by in F6Publishing: 113] [Article Influence: 13.8] [Reference Citation Analysis]
55 Catalán N, Villasante A, Wacyk J, Ramírez C, Romero J. Fermented Soybean Meal Increases Lactic Acid Bacteria in Gut Microbiota of Atlantic Salmon (Salmo salar). Probiotics Antimicrob Proteins 2018;10:566-76. [PMID: 29274013 DOI: 10.1007/s12602-017-9366-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]