BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mengist HM, Mekonnen D, Mohammed A, Shi R, Jin T. Potency, Safety, and Pharmacokinetic Profiles of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Front Pharmacol 2020;11:630500. [PMID: 33597888 DOI: 10.3389/fphar.2020.630500] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Bai B, Belovodskiy A, Hena M, Kandadai AS, Joyce MA, Saffran HA, Shields JA, Khan MB, Arutyunova E, Lu J, Bajwa SK, Hockman D, Fischer C, Lamer T, Vuong W, van Belkum MJ, Gu Z, Lin F, Du Y, Xu J, Rahim M, Young HS, Vederas JC, Tyrrell DL, Lemieux MJ, Nieman JA. Peptidomimetic α-Acyloxymethylketone Warheads with Six-Membered Lactam P1 Glutamine Mimic: SARS-CoV-2 3CL Protease Inhibition, Coronavirus Antiviral Activity, and in Vitro Biological Stability. J Med Chem 2021. [PMID: 34242027 DOI: 10.1021/acs.jmedchem.1c00616] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Kombe Kombe AJ, Zahid A, Mohammed A, Shi R, Jin T. Potent Molecular Feature-based Neutralizing Monoclonal Antibodies as Promising Therapeutics Against SARS-CoV-2 Infection. Front Mol Biosci 2021;8:670815. [PMID: 34136533 DOI: 10.3389/fmolb.2021.670815] [Reference Citation Analysis]
3 Vázquez-mendoza LH, Mendoza-figueroa HL, García-vázquez JB, Correa-basurto J, García-machorro J. In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. IJMS 2022;23:3987. [DOI: 10.3390/ijms23073987] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wu Q, Yan S, Wang Y, Li M, Xiao Y, Li Y. Discovery of 4'-O-methylscutellarein as a potent SARS-CoV-2 main protease inhibitor. Biochem Biophys Res Commun 2022;604:76-82. [PMID: 35303682 DOI: 10.1016/j.bbrc.2022.03.052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zhang CH, Spasov KA, Reilly RA, Hollander K, Stone EA, Ippolito JA, Liosi ME, Deshmukh MG, Tirado-Rives J, Zhang S, Liang Z, Miller SJ, Isaacs F, Lindenbach BD, Anderson KS, Jorgensen WL. Optimization of Triarylpyridinone Inhibitors of the Main Protease of SARS-CoV-2 to Low-Nanomolar Antiviral Potency. ACS Med Chem Lett 2021;12:1325-32. [PMID: 34408808 DOI: 10.1021/acsmedchemlett.1c00326] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
6 Abramenko N, Vellieux F, Tesařová P, Kejík Z, Kaplánek R, Lacina L, Dvořánková B, Rösel D, Brábek J, Tesař A, Jakubek M, Smetana K Jr. Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences. Int J Mol Sci 2021;22:6551. [PMID: 34207220 DOI: 10.3390/ijms22126551] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Patel CN, Jani SP, Jaiswal DG, Kumar SP, Mangukia N, Parmar RM, Rawal RM, Pandya HA. Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations. Sci Rep 2021;11:20295. [PMID: 34645849 DOI: 10.1038/s41598-021-99165-4] [Reference Citation Analysis]
8 Uddin R, Jalal K, Khan K, Ul-Haq Z. Re-purposing of hepatitis C virus FDA approved direct acting antivirals as potential SARS-CoV-2 protease inhibitors. J Mol Struct 2022;1250:131920. [PMID: 34815586 DOI: 10.1016/j.molstruc.2021.131920] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, Huang P, Ge GB. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm (2020) 2022;3:e151. [PMID: 35845352 DOI: 10.1002/mco2.151] [Reference Citation Analysis]
10 Plavec Z, Pöhner I, Poso A, Butcher SJ. Virus structure and structure-based antivirals. Curr Opin Virol 2021;51:16-24. [PMID: 34564030 DOI: 10.1016/j.coviro.2021.09.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Deshmukh MG, Ippolito JA, Zhang CH, Stone EA, Reilly RA, Miller SJ, Jorgensen WL, Anderson KS. Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Structure 2021;29:823-833.e5. [PMID: 34161756 DOI: 10.1016/j.str.2021.06.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Kandagalla S, Rimac H, Gurushankar K, Novak J, Grishina M, Potemkin V. Withasomniferol C, a new potential SARS-CoV-2 main protease inhibitor from the Withania somnifera plant proposed by in silico approaches. PeerJ 2022;10:e13374. [DOI: 10.7717/peerj.13374] [Reference Citation Analysis]
13 Unoh Y, Uehara S, Nakahara K, Nobori H, Yamatsu Y, Yamamoto S, Maruyama Y, Taoda Y, Kasamatsu K, Suto T, Kouki K, Nakahashi A, Kawashima S, Sanaki T, Toba S, Uemura K, Mizutare T, Ando S, Sasaki M, Orba Y, Sawa H, Sato A, Sato T, Kato T, Tachibana Y. Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. J Med Chem 2022. [PMID: 35352927 DOI: 10.1021/acs.jmedchem.2c00117] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 18.0] [Reference Citation Analysis]