BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Alaofi AL. Sinapic Acid Ameliorates the Progression of Streptozotocin (STZ)-Induced Diabetic Nephropathy in Rats via NRF2/HO-1 Mediated Pathways. Front Pharmacol 2020;11:1119. [PMID: 32792955 DOI: 10.3389/fphar.2020.01119] [Cited by in Crossref: 13] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Gao S, Wu G, Li H, Qiao Y, Dong C, Wang TJ. ALK7 Knockdown Plays a Protective Role on HG-Stimulated MCs through Activation of the Nrf2/HO-1 Pathway. Disease Markers 2022;2022:1-12. [DOI: 10.1155/2022/4064733] [Reference Citation Analysis]
2 Zhang Z, Li Q, Liu F, Wang D. Lycoperoside H protects against diabetic nephropathy via alteration of gut microbiota and inflammation. J Biochem Mol Toxicol 2022;:e23216. [PMID: 36156833 DOI: 10.1002/jbt.23216] [Reference Citation Analysis]
3 Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022;308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Reference Citation Analysis]
4 Altındağ F, Ergen H. Sinapic acid alleviates cisplatin-induced acute kidney injury by mitigating oxidative stress and apoptosis. Environ Sci Pollut Res. [DOI: 10.1007/s11356-022-22940-x] [Reference Citation Analysis]
5 Tanase DM, Gosav EM, Anton MI, Floria M, Seritean Isac PN, Hurjui LL, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Oxidative Stress and NRF2/KEAP1/ARE Pathway in Diabetic Kidney Disease (DKD): New Perspectives. Biomolecules 2022;12:1227. [PMID: 36139066 DOI: 10.3390/biom12091227] [Reference Citation Analysis]
6 Liu T, Li CY, Chen H, Liu J, Zhong LL, Tang MM, Wang WB, Huang JP, Jiang XS. tBHQ attenuates podocyte injury in diabetic nephropathy by inhibiting NADPH oxidase-derived ROS generation via the Nrf2/HO-1 signalling pathway. Heliyon 2022;8:e10515. [PMID: 36119860 DOI: 10.1016/j.heliyon.2022.e10515] [Reference Citation Analysis]
7 Duan Q, Tian L, Feng J, Ping X, Li L, Yaigoub H, Li R, Li Y, Wang K. Trametenolic Acid Ameliorates the Progression of Diabetic Nephropathy in db/db Mice via Nrf2/HO-1 and NF-κB-Mediated Pathways. Journal of Immunology Research 2022;2022:1-9. [DOI: 10.1155/2022/6151847] [Reference Citation Analysis]
8 khan A, Wang F, Shal B, Khan AU, Zahra SS, Haq IU, Khan S, Rengasamy KR. Anti-neuropathic pain activity of Ajugarin-I via activation of Nrf2 signaling and inhibition of TRPV1/TRPM8 nociceptors in STZ-induced diabetic neuropathy. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106392] [Reference Citation Analysis]
9 Iqbal M, Raish M, Ahmad A, Ali EA, Bin Jardan YA, Ansari MA, Shahid M, Ahad A, Alkharfy KM, Al-jenoobi FI. Cytochrome P450 3A2 and PGP-MDR1-Mediated Pharmacokinetic Interaction of Sinapic Acid with Ibrutinib in Rats: Potential Food/Herb–Drug Interaction. Processes 2022;10:1066. [DOI: 10.3390/pr10061066] [Reference Citation Analysis]
10 Guerreiro Í, Ferreira-pêgo C, Carregosa D, Santos CN, Menezes R, Fernandes AS, Costa JG. Polyphenols and Their Metabolites in Renal Diseases: An Overview. Foods 2022;11:1060. [DOI: 10.3390/foods11071060] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 AlMousa LA, AlFaris NA, Alshammari GM, Alsayadi MM, ALTamimi JZ, Alagal RI, Yahya MA. Rumex nervosus could alleviate streptozotocin-induced diabetic nephropathy in rats by activating Nrf2 signaling. Sci Prog 2022;105:368504221102751. [PMID: 35619568 DOI: 10.1177/00368504221102751] [Reference Citation Analysis]
12 Singh R, Yadav KS, Prajapati R, Sharma S, Rath SK, Narender T, Mugale MN. 4-HIL mitigates type-2 diabetic complications through inhibiting inflammation and Nrf2 mediated oxidative stress in rats. Phytomedicine Plus 2022;2:100141. [DOI: 10.1016/j.phyplu.2021.100141] [Reference Citation Analysis]
13 Lu X, Tan Q, Ma J, Zhang J, Yu P. Emerging Role of LncRNA Regulation for NLRP3 Inflammasome in Diabetes Complications. Front Cell Dev Biol 2021;9:792401. [PMID: 35087834 DOI: 10.3389/fcell.2021.792401] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Lupaescu A, Iavorschi M, Covasa M. The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics 2022;14:235. [DOI: 10.3390/pharmaceutics14020235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Koriem KMM, Gad IB. Sinapic acid restores blood parameters, serum antioxidants, and liver and kidney functions in obesity. J Diabetes Metab Disord. [DOI: 10.1007/s40200-022-00972-x] [Reference Citation Analysis]
16 Wen Y, Liu Y, Huang Q, Liu R, Liu J, Zhang F, Liu S, Jiang Y. Moringa oleifera Lam. seed extract protects kidney function in rats with diabetic nephropathy by increasing GSK-3β activity and activating the Nrf2/HO-1 pathway. Phytomedicine 2021;95:153856. [PMID: 34856477 DOI: 10.1016/j.phymed.2021.153856] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Raish M, Ahmad A, Bin Jardan YA, Shahid M, Alkharfy KM, Ahad A, Ansari MA, Abdelrahman IA, Al-Jenoobi FI. Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy by modulating NF-κB and Nrf2/HO-1 signaling pathways in streptozocin induced diabetic rats. Biomed Pharmacother 2022;145:112412. [PMID: 34768051 DOI: 10.1016/j.biopha.2021.112412] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
18 Altındağ F, Özdek U. Synergistic effects of sinapic acid and ellagic acid ameliorate streptozotocin-induced diabetic nephropathy by inhibiting apoptosis, DNA damage, and structural deterioration in rats. Hum Exp Toxicol 2021;40:S290-9. [PMID: 34661493 DOI: 10.1177/09603271211040825] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Wang L, Pan F, Luo T. Sinapic Acid Attenuates Rheumatoid Arthritis Through Reducing Inflammation and Oxidative Stress by Downregulating IκB Kinase. J Interferon Cytokine Res 2021;41:347-54. [PMID: 34543128 DOI: 10.1089/jir.2021.0044] [Reference Citation Analysis]
20 Jin, Zhang Y, Zhang Y, Duan L, Zhou R, Duan Y, Sun Y, Lian F, Tong X. Panax Ginseng C.A.Mey. as Medicine: The Potential Use of Panax Ginseng C.A.Mey. as a Remedy for Kidney Protection from a Pharmacological Perspective. Front Pharmacol 2021;12:734151. [PMID: 34512359 DOI: 10.3389/fphar.2021.734151] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Fang Q, Zheng B, Liu N, Liu J, Liu W, Huang X, Zeng X, Chen L, Li Z, Ouyang D. Trimethylamine N-Oxide Exacerbates Renal Inflammation and Fibrosis in Rats With Diabetic Kidney Disease. Front Physiol 2021;12:682482. [PMID: 34220546 DOI: 10.3389/fphys.2021.682482] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
22 Nguyen VPT, Stewart JD, Ioannou I, Allais F. Sinapic Acid and Sinapate Esters in Brassica: Innate Accumulation, Biosynthesis, Accessibility via Chemical Synthesis or Recovery From Biomass, and Biological Activities. Front Chem 2021;9:664602. [PMID: 34055737 DOI: 10.3389/fchem.2021.664602] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
23 Cao M, Li Y, Famurewa AC, Olatunji OJ. Antidiabetic and Nephroprotective Effects of Polysaccharide Extract from the Seaweed Caulerpa racemosa in High Fructose-Streptozotocin Induced Diabetic Nephropathy. Diabetes Metab Syndr Obes 2021;14:2121-31. [PMID: 34012278 DOI: 10.2147/DMSO.S302748] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
24 Gupta A, Behl T, Sehgal A, Bhatia S, Jaglan D, Bungau S. Therapeutic potential of Nrf-2 pathway in the treatment of diabetic neuropathy and nephropathy. Mol Biol Rep 2021;48:2761-74. [PMID: 33754251 DOI: 10.1007/s11033-021-06257-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chen X, Famurewa AC, Tang J, Olatunde OO, Olatunji OJ. Hyperoside attenuates neuroinflammation, cognitive impairment and oxidative stress via suppressing TNF-α/NF-κB/caspase-3 signaling in type 2 diabetes rats. Nutr Neurosci 2021;:1-11. [PMID: 33722183 DOI: 10.1080/1028415X.2021.1901047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
26 Grunenwald A, Roumenina LT, Frimat M. Heme Oxygenase 1: A Defensive Mediator in Kidney Diseases. Int J Mol Sci 2021;22:2009. [PMID: 33670516 DOI: 10.3390/ijms22042009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
27 Uddin MJ, Kim EH, Hannan MA, Ha H. Pharmacotherapy against Oxidative Stress in Chronic Kidney Disease: Promising Small Molecule Natural Products Targeting Nrf2-HO-1 Signaling. Antioxidants (Basel) 2021;10:258. [PMID: 33562389 DOI: 10.3390/antiox10020258] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 25.0] [Reference Citation Analysis]
28 Yang MY, Fan Z, Zhang Z, Fan J. MitoQ protects against high glucose-induced brain microvascular endothelial cells injury via the Nrf2/HO-1 pathway. J Pharmacol Sci 2021;145:105-14. [PMID: 33357768 DOI: 10.1016/j.jphs.2020.10.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]