BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sharma A, Pachauri V, Flora SJS. Advances in Multi-Functional Ligands and the Need for Metal-Related Pharmacology for the Management of Alzheimer Disease. Front Pharmacol 2018;9:1247. [PMID: 30498443 DOI: 10.3389/fphar.2018.01247] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Bortolami M, Pandolfi F, Tudino V, Messore A, Madia VN, De Vita D, Di Santo R, Costi R, Romeo I, Alcaro S, Colone M, Stringaro A, Espargaró A, Sabatè R, Scipione L. Design, Synthesis, and In Vitro, In Silico and In Cellulo Evaluation of New Pyrimidine and Pyridine Amide and Carbamate Derivatives as Multi-Functional Cholinesterase Inhibitors. Pharmaceuticals 2022;15:673. [DOI: 10.3390/ph15060673] [Reference Citation Analysis]
2 Lewis FW, Bird K, Navarro JP, El Fallah R, Brandel J, Hubscher-Bruder V, Tsatsanis A, Duce JA, Tétard D, Bourne S, Maina M, Pienaar IS. Synthesis, physicochemical characterization and neuroprotective evaluation of novel 1-hydroxypyrazin-2(1H)-one iron chelators in an in vitro cell model of Parkinson's disease. Dalton Trans 2022. [PMID: 35147617 DOI: 10.1039/d1dt02604f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Guesne S, Connole L, Kim S, Motevalli M, Robson L, Michael-Titus AT, Sullivan A. Umbelliferyloxymethyl phosphonate compounds-weakly binding zinc ionophores with neuroprotective properties. Dalton Trans 2021;50:17041-51. [PMID: 34761777 DOI: 10.1039/d1dt02298a] [Reference Citation Analysis]
4 Wu J, Kou X, Ju H, Zhang H, Yang A, Shen R. Design, synthesis and biological evaluation of naringenin carbamate derivatives as potential multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2021;49:128316. [PMID: 34391893 DOI: 10.1016/j.bmcl.2021.128316] [Reference Citation Analysis]
5 Nozal V, García-Rubia A, Cuevas EP, Pérez C, Tosat-Bitrián C, Bartolomé F, Carro E, Ramírez D, Palomo V, Martínez A. From Kinase Inhibitors to Multitarget Ligands as Powerful Drug Leads for Alzheimer's Disease using Protein-Templated Synthesis. Angew Chem Int Ed Engl 2021;60:19344-54. [PMID: 34169618 DOI: 10.1002/anie.202106295] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Phadke AV, Tayade AA, Khambete MP. Therapeutic potential of ferulic acid and its derivatives in Alzheimer's disease-A systematic review. Chem Biol Drug Des 2021. [PMID: 34240555 DOI: 10.1111/cbdd.13922] [Reference Citation Analysis]
7 Lakey-Beitia J, Burillo AM, La Penna G, Hegde ML, Rao KS. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. J Alzheimers Dis 2021;82:S335-57. [PMID: 32568200 DOI: 10.3233/JAD-200185] [Cited by in Crossref: 2] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
8 Gorecki L, Uliassi E, Bartolini M, Janockova J, Hrabinova M, Hepnarova V, Prchal L, Muckova L, Pejchal J, Karasova JZ, Mezeiova E, Benkova M, Kobrlova T, Soukup O, Petralla S, Monti B, Korabecny J, Bolognesi ML. Phenothiazine-Tacrine Heterodimers: Pursuing Multitarget Directed Approach in Alzheimer's Disease. ACS Chem Neurosci 2021;12:1698-715. [PMID: 33852284 DOI: 10.1021/acschemneuro.1c00184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Babaee S, Chehardoli G, Akbarzadeh T, Zolfigol MA, Mahdavi M, Rastegari A, Homayouni Moghadam F, Najafi Z. Design, Synthesis, and Molecular Docking of Some Novel Tacrine Based Cyclopentapyranopyridine- and Tetrahydropyranoquinoline-Kojic Acid Derivatives as Anti-Acetylcholinesterase Agents. Chem Biodivers 2021;18:e2000924. [PMID: 33861892 DOI: 10.1002/cbdv.202000924] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
10 Ben-Shushan S, Miller Y. Neuropeptides: Roles and Activities as Metal Chelators in Neurodegenerative Diseases. J Phys Chem B 2021;125:2796-811. [PMID: 33570949 DOI: 10.1021/acs.jpcb.0c11151] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Pal T, Patil P, Sharma A. Synthesis, molecular docking and spectroscopic studies of pyridoxine carbamates as metal chelator. Journal of Molecular Structure 2021;1223:128837. [DOI: 10.1016/j.molstruc.2020.128837] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zaręba N, Kepinska M. The Function of Transthyretin Complexes with Metallothionein in Alzheimer's Disease. Int J Mol Sci 2020;21:E9003. [PMID: 33256250 DOI: 10.3390/ijms21239003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
13 Zubčić K, Hof PR, Šimić G, Jazvinšćak Jembrek M. The Role of Copper in Tau-Related Pathology in Alzheimer's Disease. Front Mol Neurosci 2020;13:572308. [PMID: 33071757 DOI: 10.3389/fnmol.2020.572308] [Cited by in Crossref: 5] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
14 Tan X, Guan H, Yang Y, Luo S, Hou L, Chen H, Li J. Cu(II) disrupts autophagy-mediated lysosomal degradation of oligomeric Aβ in microglia via mTOR-TFEB pathway. Toxicology and Applied Pharmacology 2020;401:115090. [DOI: 10.1016/j.taap.2020.115090] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: Finding ways for prevention. Med Res Rev 2021;41:770-84. [PMID: 32656815 DOI: 10.1002/med.21712] [Cited by in Crossref: 12] [Cited by in F6Publishing: 46] [Article Influence: 6.0] [Reference Citation Analysis]
16 Leuci R, Brunetti L, Laghezza A, Loiodice F, Tortorella P, Piemontese L. Importance of Biometals as Targets in Medicinal Chemistry: An Overview about the Role of Zinc (II) Chelating Agents. Applied Sciences 2020;10:4118. [DOI: 10.3390/app10124118] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
17 Benek O, Korabecny J, Soukup O. A Perspective on Multi-target Drugs for Alzheimer's Disease. Trends Pharmacol Sci 2020;41:434-45. [PMID: 32448557 DOI: 10.1016/j.tips.2020.04.008] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 22.5] [Reference Citation Analysis]
18 Jiang X, Guo J, Lv Y, Yao C, Zhang C, Mi Z, Shi Y, Gu J, Zhou T, Bai R, Xie Y. Rational design, synthesis and biological evaluation of novel multitargeting anti-AD iron chelators with potent MAO-B inhibitory and antioxidant activity. Bioorg Med Chem 2020;28:115550. [PMID: 32503694 DOI: 10.1016/j.bmc.2020.115550] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
19 Mahl CRA, Taketa TB, Rocha-Neto JBM, Almeida WP, Beppu MM. Copper Ion Uptake by Chitosan in the Presence of Amyloid-β and Histidine. Appl Biochem Biotechnol 2020;190:949-65. [PMID: 31630339 DOI: 10.1007/s12010-019-03120-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
20 Derry PJ, Hegde ML, Jackson GR, Kayed R, Tour JM, Tsai AL, Kent TA. Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective. Prog Neurobiol 2020;184:101716. [PMID: 31604111 DOI: 10.1016/j.pneurobio.2019.101716] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
21 Miller JJ, Blanchet A, Orvain C, Nouchikian L, Reviriot Y, Clarke RM, Martelino D, Wilson D, Gaiddon C, Storr T. Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Chem Sci 2019;10:10802-14. [PMID: 32055386 DOI: 10.1039/c9sc04151f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
22 Gao F, Zhao J, Liu P, Ji D, Zhang L, Zhang M, Li Y, Xiao Y. Preparation and in vitro evaluation of multi-target-directed selenium-chondroitin sulfate nanoparticles in protecting against the Alzheimer's disease. Int J Biol Macromol 2020;142:265-76. [PMID: 31593732 DOI: 10.1016/j.ijbiomac.2019.09.098] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
23 Yang GJ, Liu H, Ma DL, Leung CH. Rebalancing metal dyshomeostasis for Alzheimer's disease therapy. J Biol Inorg Chem 2019;24:1159-70. [PMID: 31486954 DOI: 10.1007/s00775-019-01712-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
24 Patil P, Thakur A, Sharma A, Flora SJS. Natural products and their derivatives as multifunctional ligands against Alzheimer's disease. Drug Dev Res 2020;81:165-83. [PMID: 31820476 DOI: 10.1002/ddr.21587] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
25 Petrella C, Di Certo MG, Barbato C, Gabanella F, Ralli M, Greco A, Possenti R, Severini C. Neuropeptides in Alzheimer’s Disease: An Update. CAR 2019;16:544-58. [DOI: 10.2174/1567205016666190503152555] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
26 González JF, Alcántara AR, Doadrio AL, Sánchez-Montero JM. Developments with multi-target drugs for Alzheimer's disease: an overview of the current discovery approaches. Expert Opin Drug Discov 2019;14:879-91. [PMID: 31165654 DOI: 10.1080/17460441.2019.1623201] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
27 Kim JJ, Kim YS, Kumar V. Heavy metal toxicity: An update of chelating therapeutic strategies. J Trace Elem Med Biol 2019;54:226-31. [PMID: 31109617 DOI: 10.1016/j.jtemb.2019.05.003] [Cited by in Crossref: 96] [Cited by in F6Publishing: 61] [Article Influence: 32.0] [Reference Citation Analysis]
28 Sestito S, Wang S, Chen Q, Lu J, Bertini S, Pomelli C, Chiellini G, He X, Pi R, Rapposelli S. Multi-targeted ChEI-copper chelating molecules as neuroprotective agents. Eur J Med Chem 2019;174:216-25. [PMID: 31042617 DOI: 10.1016/j.ejmech.2019.04.060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
29 Sales TA, Prandi IG, Castro AA, Leal DHS, Cunha EFFD, Kuca K, Ramalho TC. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. Int J Mol Sci 2019;20:E1829. [PMID: 31013856 DOI: 10.3390/ijms20081829] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 5.7] [Reference Citation Analysis]
30 Tantimongcolwat T, Prachayasittikul S, Prachayasittikul V. Unravelling the interaction mechanism between clioquinol and bovine serum albumin by multi-spectroscopic and molecular docking approaches. Spectrochim Acta A Mol Biomol Spectrosc 2019;216:25-34. [PMID: 30865872 DOI: 10.1016/j.saa.2019.03.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
31 Tan X, Zhou Y, Gong P, Guan H, Wu B, Hou L, Feng X, Zheng W, Li J. A multifunctional bis-(−)-nor-meptazinol-oxalamide hybrid with metal-chelating property ameliorates Cu(II)-induced spatial learning and memory deficits via preventing neuroinflammation and oxido-nitrosative stress in mice. Journal of Trace Elements in Medicine and Biology 2019;52:199-208. [DOI: 10.1016/j.jtemb.2018.12.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]