1 |
Siyanaki MRH, Azab MA, Lucke-Wold B. Traumatic Optic Neuropathy: Update on Management. Encyclopedia (Basel, 2021) 2023;3:88-101. [PMID: 36718432 DOI: 10.3390/encyclopedia3010007] [Reference Citation Analysis]
|
2 |
Lamanilao GG, Dogan M, Patel PS, Azim S, Patel DS, Bhattacharya SK, Eason JD, Kuscu C, Kuscu C, Bajwa A. Key hepatoprotective roles of mitochondria in liver regeneration. Am J Physiol Gastrointest Liver Physiol 2023;324:G207-18. [PMID: 36648139 DOI: 10.1152/ajpgi.00220.2022] [Reference Citation Analysis]
|
3 |
Méthot S, Proulx S, Brunette I, Rochette PJ. Rescuing cellular function in Fuchs endothelial corneal dystrophy by healthy exogenous mitochondrial internalization. Sci Rep 2023;13:3380. [PMID: 36854766 DOI: 10.1038/s41598-023-30383-8] [Reference Citation Analysis]
|
4 |
Jia X, Wang Q, Ji J, Lu W, Liu Z, Tian H, Guo L, Wang Y. Mitochondrial transplantation ameliorates hippocampal damage following status epilepticus. Animal Model Exp Med 2023;6:41-50. [PMID: 36734302 DOI: 10.1002/ame2.12310] [Reference Citation Analysis]
|
5 |
D'Amato M, Morra F, Di Meo I, Tiranti V. Mitochondrial Transplantation in Mitochondrial Medicine: Current Challenges and Future Perspectives. Int J Mol Sci 2023;24. [PMID: 36768312 DOI: 10.3390/ijms24031969] [Reference Citation Analysis]
|
6 |
Lee SE, Kang YC, Kim Y, Kim S, Yu SH, Park JH, Kim IH, Kim HY, Han K, Lee HK, Kim SH, Kim CH. Preferred Migration of Mitochondria toward Cells and Tissues with Mitochondrial Damage. Int J Mol Sci 2022;23. [PMID: 36555376 DOI: 10.3390/ijms232415734] [Reference Citation Analysis]
|
7 |
Liu Z, Sun Y, Qi Z, Cao L, Ding S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci 2022;12:66. [DOI: 10.1186/s13578-022-00805-7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
8 |
Yang J, Chen S, Duan F, Wang X, Zhang X, Lian B, Kou M, Chiang Z, Li Z, Lian Q. Mitochondrial Cardiomyopathy: Molecular Epidemiology, Diagnosis, Models, and Therapeutic Management. Cells 2022;11:3511. [DOI: 10.3390/cells11213511] [Reference Citation Analysis]
|
9 |
Chen Y, Yang F, Chu Y, Yun Z, Yan Y, Jin J. Mitochondrial transplantation: opportunities and challenges in the treatment of obesity, diabetes, and nonalcoholic fatty liver disease. J Transl Med 2022;20:483. [PMID: 36273156 DOI: 10.1186/s12967-022-03693-0] [Reference Citation Analysis]
|
10 |
Luo J, Shen S, Xia J, Wang J, Gu Z. Mitochondria as the Essence of Yang Qi in the Human Body. Phenomics 2022;2:336-48. [PMID: 36939762 DOI: 10.1007/s43657-022-00060-3] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
11 |
Xia Y, Gao B, Zhang X. Targeting mitochondrial quality control of T cells: Regulating the immune response in HCC. Front Oncol 2022;12:993437. [DOI: 10.3389/fonc.2022.993437] [Reference Citation Analysis]
|
12 |
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. IJMS 2022;23:7280. [DOI: 10.3390/ijms23137280] [Reference Citation Analysis]
|
13 |
Kit O, Frantsiyants E, Shikhlyarova A, Neskubina I, Kaplieva I, Trepitaki L, Pogorelova Y, Cheryarina N, Vereskunova A, Bandovkina V, Surikova E, Maksimova N, Kotieva I, Gusareva M, Pozdnyakova V. Мitochondrial therapy of melanoma B16/F10, pathophysiological parameters of tumor regression. CM 2022. [DOI: 10.18137/cardiometry.2022.22.5661] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Ezhilarasan D, Lakshmi T, Kosuru R. A Molecular Insight into the Role of Antioxidants in Nonalcoholic Fatty Liver Diseases. Oxidative Medicine and Cellular Longevity 2022;2022:1-15. [DOI: 10.1155/2022/9233650] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Hernández-cruz EY, Amador-martínez I, Aranda-rivera AK, Cruz-gregorio A, Pedraza Chaverri J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chemico-Biological Interactions 2022. [DOI: 10.1016/j.cbi.2022.109961] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
|
16 |
Yu S, Kim S, Kim Y, Lee S, Park JH, Cho G, Ha J, Jung H, Lim S, Han K, Lee HK, Kang YC, Kim C. Human umbilical cord mesenchymal stem cell-derived mitochondria (PN-101) attenuate LPS-induced inflammatory responses by inhibiting NFκB signaling pathway. BMB Rep 2022;55:136-41. [DOI: 10.5483/bmbrep.2022.55.3.083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Velarde F, Ezquerra S, Delbruyere X, Caicedo A, Hidalgo Y, Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell Mol Life Sci 2022;79:177. [PMID: 35247083 DOI: 10.1007/s00018-022-04207-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
18 |
Karkucinska-Wieckowska A, Simoes ICM, Kalinowski P, Lebiedzinska-Arciszewska M, Zieniewicz K, Milkiewicz P, Górska-Ponikowska M, Pinton P, Malik AN, Krawczyk M, Oliveira PJ, Wieckowski MR. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. Eur J Clin Invest 2022;52:e13622. [PMID: 34050922 DOI: 10.1111/eci.13622] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 17.0] [Reference Citation Analysis]
|
19 |
Chen B, Zhang H, Zhai Q, Li H, Wang C, Wang Y. Traumatic optic neuropathy: a review of current studies. Neurosurg Rev 2022. [PMID: 35034261 DOI: 10.1007/s10143-021-01717-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
20 |
Chen J, Zhong J, Wang LL, Chen YY. Mitochondrial Transfer in Cardiovascular Disease: From Mechanisms to Therapeutic Implications. Front Cardiovasc Med 2021;8:771298. [PMID: 34901230 DOI: 10.3389/fcvm.2021.771298] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
21 |
Caldeira DAF, Weiss DJ, Rocco PRM, Silva PL, Cruz FF. Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Front Immunol 2021;12:782074. [PMID: 34887870 DOI: 10.3389/fimmu.2021.782074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
|
22 |
Xie Q, Zeng J, Zheng Y, Li T, Ren J, Chen K, Zhang Q, Xie R, Xu F, Zhu J. Mitochondrial Transplantation Attenuates Cerebral Ischemia-Reperfusion Injury: Possible Involvement of Mitochondrial Component Separation. Oxid Med Cell Longev 2021;2021:1006636. [PMID: 34849186 DOI: 10.1155/2021/1006636] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Zhu Q, An YA, Scherer PE. Mitochondrial regulation and white adipose tissue homeostasis. Trends Cell Biol 2021:S0962-8924(21)00221-X. [PMID: 34810062 DOI: 10.1016/j.tcb.2021.10.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
|
24 |
Zhao Z, Fu C, Zhang Y, Fu A. Dimeric Histidine as a Novel Free Radical Scavenger Alleviates Non-Alcoholic Liver Injury. Antioxidants (Basel) 2021;10:1529. [PMID: 34679664 DOI: 10.3390/antiox10101529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
25 |
Amador-martínez I, Hernández-cruz EY, Jiménez-uribe AP, Sánchez-lozada LG, Aparicio-trejo OE, Tapia E, Barrera-chimal J, Pedraza-chaverri J. Mitochondrial Transplantation: Is It a Feasible Therapy to Prevent the Cardiorenal Side Effects of Cisplatin? Future Pharmacology 2021;1:3-26. [DOI: 10.3390/futurepharmacol1010002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
26 |
Tara A, Dominic JL, Patel JN, Garg I, Yeon J, Memon MS, Gergal Gopalkrishna Rao SR, Bugazia S, Dhandapani TPM, Kannan A, Kantamaneni K, Win M, Went TR, Yanamala VL, Mostafa JA. Mitochondrial Targeting Therapy Role in Liver Transplant Preservation Lines: Mechanism and Therapeutic Strategies. Cureus. [DOI: 10.7759/cureus.16599] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
27 |
Middleton P, Vergis N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 2021;14:17562848211031394. [PMID: 34377148 DOI: 10.1177/17562848211031394] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
28 |
Nascimento-Dos-Santos G, de-Souza-Ferreira E, Linden R, Galina A, Petrs-Silva H. Mitotherapy: Unraveling a Promising Treatment for Disorders of the Central Nervous System and Other Systemic Conditions. Cells 2021;10:1827. [PMID: 34359994 DOI: 10.3390/cells10071827] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
29 |
Di Ciaula A, Calamita G, Shanmugam H, Khalil M, Bonfrate L, Wang DQ, Baffy G, Portincasa P. Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests. Int J Mol Sci 2021;22. [PMID: 34299321 DOI: 10.3390/ijms22147702] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
30 |
Fu A. Mitotherapy as a Novel Therapeutic Strategy for Mitochondrial Diseases. Curr Mol Pharmacol 2020;13:41-9. [PMID: 31345157 DOI: 10.2174/1874467212666190920144115] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
31 |
Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQ, Portincasa P. Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? Int J Mol Sci 2021;22:5375. [PMID: 34065331 DOI: 10.3390/ijms22105375] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
|
32 |
Park A, Oh M, Lee SJ, Oh KJ, Lee EW, Lee SC, Bae KH, Han BS, Kim WK. Mitochondrial Transplantation as a Novel Therapeutic Strategy for Mitochondrial Diseases. Int J Mol Sci 2021;22:4793. [PMID: 33946468 DOI: 10.3390/ijms22094793] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
|
33 |
de Carvalho LRP, Abreu SC, de Castro LL, Andrade da Silva LH, Silva PM, Vieira JB, Santos RT, Cabral MR, Khoury M, Weiss DJ, Lopes-Pacheco M, Silva PL, Cruz FF, Rocco PRM. Mitochondria-Rich Fraction Isolated From Mesenchymal Stromal Cells Reduces Lung and Distal Organ Injury in Experimental Sepsis. Crit Care Med 2021;49:e880-90. [PMID: 33870913 DOI: 10.1097/CCM.0000000000005056] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
34 |
Xiang L, Shao Y, Chen Y. Mitochondrial dysfunction and mitochondrion-targeted therapeutics in liver diseases. J Drug Target 2021;:1-14. [PMID: 33788656 DOI: 10.1080/1061186X.2021.1909051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
35 |
Longo M, Meroni M, Paolini E, Macchi C, Dongiovanni P. Mitochondrial dynamics and nonalcoholic fatty liver disease (NAFLD): new perspectives for a fairy-tale ending? Metabolism 2021;117:154708. [PMID: 33444607 DOI: 10.1016/j.metabol.2021.154708] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
|
36 |
Prasun P, Ginevic I, Oishi K. Mitochondrial dysfunction in nonalcoholic fatty liver disease and alcohol related liver disease. Transl Gastroenterol Hepatol 2021;6:4. [PMID: 33437892 DOI: 10.21037/tgh-20-125] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
37 |
Grattagliano I, Di Ciaula A, Baj J, Molina-Molina E, Shanmugam H, Garruti G, Wang DQ, Portincasa P. Protocols for Mitochondria as the Target of Pharmacological Therapy in the Context of Nonalcoholic Fatty Liver Disease (NAFLD). Methods Mol Biol 2021;2310:201-46. [PMID: 34096005 DOI: 10.1007/978-1-0716-1433-4_12] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
38 |
Zhao Z, Hou Y, Zhou W, Keerthiga R, Fu A. Mitochondrial transplantation therapy inhibit carbon tetrachloride-induced liver injury through scavenging free radicals and protecting hepatocytes. Bioeng Transl Med 2021;6:e10209. [PMID: 34027095 DOI: 10.1002/btm2.10209] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
39 |
Mukherjee A, Becerra Calixto AD, Chavez M, Delgado JP, Soto C. Mitochondrial transplant to replenish damaged mitochondria: A novel therapeutic strategy for neurodegenerative diseases? Prog Mol Biol Transl Sci 2021;177:49-63. [PMID: 33453942 DOI: 10.1016/bs.pmbts.2020.10.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
40 |
Lu M, Guo J, Wu B, Zhou Y, Wu M, Farzaneh M, Khoshnam SE. Mesenchymal Stem Cell-Mediated Mitochondrial Transfer: a Therapeutic Approach for Ischemic Stroke. Transl Stroke Res 2021;12:212-29. [PMID: 32975692 DOI: 10.1007/s12975-020-00853-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
|
41 |
Yamada Y, Ito M, Arai M, Hibino M, Tsujioka T, Harashima H. Challenges in Promoting Mitochondrial Transplantation Therapy. Int J Mol Sci 2020;21:E6365. [PMID: 32887310 DOI: 10.3390/ijms21176365] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
|
42 |
Shanmughapriya S, Langford D, Natarajaseenivasan K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res Rev 2020;62:101128. [PMID: 32712108 DOI: 10.1016/j.arr.2020.101128] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
|
43 |
Balcázar M, Cañizares S, Borja T, Pontón P, Bisiou S, Carabasse E, Bacilieri A, Canavese C, Diaz RF, Cabrera F, Caicedo A. Bases for Treating Skin Aging With Artificial Mitochondrial Transfer/Transplant (AMT/T). Front Bioeng Biotechnol 2020;8:919. [PMID: 32903493 DOI: 10.3389/fbioe.2020.00919] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
44 |
Chen W, Huang J, Hu Y, Khoshnam SE, Sarkaki A. Mitochondrial Transfer as a Therapeutic Strategy Against Ischemic Stroke. Transl Stroke Res 2020;11:1214-28. [PMID: 32592024 DOI: 10.1007/s12975-020-00828-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
|
45 |
Nakhle J, Rodriguez AM, Vignais ML. Multifaceted Roles of Mitochondrial Components and Metabolites in Metabolic Diseases and Cancer. Int J Mol Sci 2020;21:E4405. [PMID: 32575796 DOI: 10.3390/ijms21124405] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
46 |
Khan S, Raj D, Jaiswal K, Lahiri A. Modulation of host mitochondrial dynamics during bacterial infection. Mitochondrion 2020;53:140-9. [PMID: 32470613 DOI: 10.1016/j.mito.2020.05.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
|
47 |
Cortés-Rojo C, Vargas-Vargas MA, Olmos-Orizaba BE, Rodríguez-Orozco AR, Calderón-Cortés E. Interplay between NADH oxidation by complex I, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance. Biochim Biophys Acta Mol Basis Dis 2020;1866:165801. [PMID: 32305451 DOI: 10.1016/j.bbadis.2020.165801] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
|
48 |
Nguyen NNY, Kim SS, Jo YH. Deregulated Mitochondrial DNA in Diseases. DNA Cell Biol 2020;39:1385-400. [PMID: 31944832 DOI: 10.1089/dna.2019.5220] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
49 |
Zhao Z, Yu Z, Hou Y, Zhang L, Fu A. Improvement of cognitive and motor performance with mitotherapy in aged mice. Int J Biol Sci 2020;16:849-58. [PMID: 32071554 DOI: 10.7150/ijbs.40886] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
|
50 |
Nascimento-Dos-Santos G, de-Souza-Ferreira E, Lani R, Faria CC, Araújo VG, Teixeira-Pinheiro LC, Vasconcelos T, Gonçalo T, Santiago MF, Linden R, Galina A, Petrs-Silva H. Neuroprotection from optic nerve injury and modulation of oxidative metabolism by transplantation of active mitochondria to the retina. Biochim Biophys Acta Mol Basis Dis 2020;1866:165686. [PMID: 31953215 DOI: 10.1016/j.bbadis.2020.165686] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
|
51 |
Stevanović J, Beleza J, Coxito P, Ascensão A, Magalhães J. Physical exercise and liver "fitness": Role of mitochondrial function and epigenetics-related mechanisms in non-alcoholic fatty liver disease. Mol Metab 2020;32:1-14. [PMID: 32029220 DOI: 10.1016/j.molmet.2019.11.015] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 8.5] [Reference Citation Analysis]
|
52 |
Simoes ICM, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, Potes Y. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients 2019;11:E2871. [PMID: 31771244 DOI: 10.3390/nu11122871] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
|
53 |
Bekyarova G, Tzaneva M, Bratoeva K, Ivanova I, Kotzev A, Hristova M, Krastev D, Kindekov I, Mileva M. 4-Hydroxynonenal (HNE) and hepatic injury related to chronic oxidative stress. Biotechnology & Biotechnological Equipment 2019;33:1544-52. [DOI: 10.1080/13102818.2019.1674690] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
|
54 |
Fu A, Hou Y, Yu Z, Zhao Z, Liu Z. Healthy mitochondria inhibit the metastatic melanoma in lungs. Int J Biol Sci 2019;15:2707-18. [PMID: 31754341 DOI: 10.7150/ijbs.38104] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
|
55 |
Kholodenko IV, Kurbatov LK, Kholodenko RV, Manukyan GV, Yarygin KN. Mesenchymal Stem Cells in the Adult Human Liver: Hype or Hope? Cells 2019;8:E1127. [PMID: 31546729 DOI: 10.3390/cells8101127] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 6.5] [Reference Citation Analysis]
|
56 |
Wang Y, Ni J, Gao C, Xie L, Zhai L, Cui G, Yin X. Mitochondrial transplantation attenuates lipopolysaccharide- induced depression-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2019;93:240-9. [PMID: 31022424 DOI: 10.1016/j.pnpbp.2019.04.010] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
|
57 |
Wang S, Yang FJ, Shang LC, Zhang YH, Zhou Y, Shi XL. Puerarin protects against high-fat high-sucrose diet-induced non-alcoholic fatty liver disease by modulating PARP-1/PI3K/AKT signaling pathway and facilitating mitochondrial homeostasis. Phytother Res 2019;33:2347-59. [PMID: 31273855 DOI: 10.1002/ptr.6417] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 7.3] [Reference Citation Analysis]
|
58 |
Chang CY, Liang MZ, Chen L. Current progress of mitochondrial transplantation that promotes neuronal regeneration. Transl Neurodegener 2019;8:17. [PMID: 31210929 DOI: 10.1186/s40035-019-0158-8] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 11.0] [Reference Citation Analysis]
|
59 |
Chen JP, Shi SS, Liu GF, Chen Y, Zheng SS, Wang XB, Lin RH, He HX, Lin CH. Potential Clinical Risk of Inflammation and Toxicity from Rare-Earth Nanoparticles in Mice. Chin Med J (Engl) 2018;131:1591-7. [PMID: 29941713 DOI: 10.4103/0366-6999.235105] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
60 |
Grattagliano I, Montezinho LP, Oliveira PJ, Frühbeck G, Gómez-Ambrosi J, Montecucco F, Carbone F, Wieckowski MR, Wang DQ, Portincasa P. Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochem Pharmacol 2019;160:34-45. [PMID: 30508523 DOI: 10.1016/j.bcp.2018.11.020] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 7.2] [Reference Citation Analysis]
|
61 |
Schleicher J, Dahmen U. Computational Modeling of Oxidative Stress in Fatty Livers Elucidates the Underlying Mechanism of the Increased Susceptibility to Ischemia/Reperfusion Injury. Comput Struct Biotechnol J 2018;16:511-22. [PMID: 30505404 DOI: 10.1016/j.csbj.2018.10.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
|
62 |
Liu P, Lin H, Xu Y, Zhou F, Wang J, Liu J, Zhu X, Guo X, Tang Y, Yao P. Frataxin-Mediated PINK1-Parkin-Dependent Mitophagy in Hepatic Steatosis: The Protective Effects of Quercetin. Mol Nutr Food Res 2018;62:e1800164. [PMID: 29935106 DOI: 10.1002/mnfr.201800164] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 9.6] [Reference Citation Analysis]
|
63 |
Shi X, Bai H, Zhao M, Li X, Sun X, Jiang H, Fu A. Treatment of acetaminophen-induced liver injury with exogenous mitochondria in mice. Transl Res 2018;196:31-41. [PMID: 29548626 DOI: 10.1016/j.trsl.2018.02.003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 6.4] [Reference Citation Analysis]
|
64 |
Wilson RJ, Drake JC, Cui D, Zhang M, Perry HM, Kashatus JA, Kusminski CM, Scherer PE, Kashatus DF, Okusa MD, Yan Z. Conditional MitoTimer reporter mice for assessment of mitochondrial structure, oxidative stress, and mitophagy. Mitochondrion 2019;44:20-6. [PMID: 29274400 DOI: 10.1016/j.mito.2017.12.008] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 5.7] [Reference Citation Analysis]
|
65 |
Ajith TA. Role of mitochondria and mitochondria-targeted agents in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol. 2018;45:413-421. [PMID: 29112771 DOI: 10.1111/1440-1681.12886] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 5.7] [Reference Citation Analysis]
|