BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cripps J, Rudd A, Ebers GC. Birth order and multiple sclerosis. Acta Neurol Scand. 1982;66:342-346. [PMID: 7136496 DOI: 10.3389/fonc.2020.00428] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 0.7] [Reference Citation Analysis]
Number Citing Articles
1 Leong LT, Malkov S, Drukker K, Niell BL, Sadowski P, Wolfgruber T, Greenwood HI, Joe BN, Kerlikowske K, Giger ML, Shepherd JA. Dual-energy three-compartment breast imaging for compositional biomarkers to improve detection of malignant lesions. Commun Med 2021;1. [DOI: 10.1038/s43856-021-00024-0] [Reference Citation Analysis]
2 Gao X, Dong QZ. Advance in metabolism and target therapy in breast cancer stem cells. World J Stem Cells 2020; 12(11): 1295-1306 [PMID: 33312399 DOI: 10.4252/wjsc.v12.i11.1295] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
3 Rajagopal T, Talluri S, Venkatabalasubramanian S, Dunna NR. Multifaceted roles of long non-coding RNAs in triple-negative breast cancer: biology and clinical applications. Biochem Soc Trans 2020;48:2791-810. [PMID: 33258920 DOI: 10.1042/BST20200666] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Chang Y, Chang PM, Li C, Chan M, Lee Y, Chen M, Hsiao M. Aldolase A and Phospholipase D1 Synergistically Resist Alkylating Agents and Radiation in Lung Cancer. Front Oncol 2022;11:811635. [DOI: 10.3389/fonc.2021.811635] [Reference Citation Analysis]
5 Zaher DM, Talaat IM, Hussein A, Hachim MY, Omar HA. Differential expression of pyruvate dehydrogenase E1A and its inactive phosphorylated form among breast cancer subtypes. Life Sci 2021;284:119885. [PMID: 34384830 DOI: 10.1016/j.lfs.2021.119885] [Reference Citation Analysis]
6 Aslan M, Hsu EC, Garcia-Marques FJ, Bermudez A, Liu S, Shen M, West M, Zhang CA, Rice MA, Brooks JD, West R, Pitteri SJ, Győrffy B, Stoyanova T. Oncogene-mediated metabolic gene signature predicts breast cancer outcome. NPJ Breast Cancer 2021;7:141. [PMID: 34711841 DOI: 10.1038/s41523-021-00341-6] [Reference Citation Analysis]
7 Zhang R, Zhu Q, Yin D, Yang Z, Guo J, Zhang J, Zhou Y, Yu JJ. Identification and Validation of an Autophagy-Related lncRNA Signature for Patients With Breast Cancer. Front Oncol 2020;10:597569. [PMID: 33614483 DOI: 10.3389/fonc.2020.597569] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Amirkhani Namagerdi A, d'Angelo D, Ciani F, Iannuzzi CA, Napolitano F, Avallone L, De Laurentiis M, Giordano A. Triple-Negative Breast Cancer Comparison With Canine Mammary Tumors From Light Microscopy to Molecular Pathology. Front Oncol 2020;10:563779. [PMID: 33282730 DOI: 10.3389/fonc.2020.563779] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Fukano M, Park M, Deblois G. Metabolic Flexibility Is a Determinant of Breast Cancer Heterogeneity and Progression. Cancers (Basel) 2021;13:4699. [PMID: 34572926 DOI: 10.3390/cancers13184699] [Reference Citation Analysis]
10 Cui NP, Qiao S, Jiang S, Hu JL, Wang TT, Liu WW, Qin Y, Wang YN, Zheng LS, Zhang JC, Ma YP, Chen BP, Shi JH. Protein Tyrosine Kinase 7 Regulates EGFR/Akt Signaling Pathway and Correlates With Malignant Progression in Triple-Negative Breast Cancer. Front Oncol 2021;11:699889. [PMID: 34367983 DOI: 10.3389/fonc.2021.699889] [Reference Citation Analysis]
11 Guo X, Wang A, Wang W, Wang Y, Chen H, Liu X, Xia T, Zhang A, Chen D, Qi H, Ling T, Piao HL, Wang HJ. HRD1 inhibits fatty acid oxidation and tumorigenesis by ubiquitinating CPT2 in triple-negative breast cancer. Mol Oncol 2021;15:642-56. [PMID: 33207079 DOI: 10.1002/1878-0261.12856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Gong TQ, Jiang YZ, Shao C, Peng WT, Liu MW, Li DQ, Zhang BY, Du P, Huang Y, Li FF, Li MY, Han ZL, Jin X, Ma D, Xiao Y, Yang PY, Qin J, Shao ZM, Zhu W. Proteome-centric cross-omics characterization and integrated network analyses of triple-negative breast cancer. Cell Rep 2022;38:110460. [PMID: 35235781 DOI: 10.1016/j.celrep.2022.110460] [Reference Citation Analysis]
13 Shen YA, Chen CL, Huang YH, Evans EE, Cheng CC, Chuang YJ, Zhang C, Le A. Inhibition of glutaminolysis in combination with other therapies to improve cancer treatment. Curr Opin Chem Biol 2021;62:64-81. [PMID: 33721588 DOI: 10.1016/j.cbpa.2021.01.006] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Zhu S, Gu H, Peng C, Xia F, Cao H, Cui H. Regulation of Glucose, Fatty Acid and Amino Acid Metabolism by Ubiquitination and SUMOylation for Cancer Progression. Front Cell Dev Biol 2022;10:849625. [DOI: 10.3389/fcell.2022.849625] [Reference Citation Analysis]
15 Tsai TH, Yang CC, Kou TC, Yang CE, Dai JZ, Chen CL, Lin CW. Overexpression of GLUT3 promotes metastasis of triple-negative breast cancer by modulating the inflammatory tumor microenvironment. J Cell Physiol 2021;236:4669-80. [PMID: 33421130 DOI: 10.1002/jcp.30189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Song X, Wang X, Liu Z, Yu Z. Role of GPX4-Mediated Ferroptosis in the Sensitivity of Triple Negative Breast Cancer Cells to Gefitinib. Front Oncol 2020;10:597434. [PMID: 33425751 DOI: 10.3389/fonc.2020.597434] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
17 Chan S, Smith E, Gao Y, Kwan J, Blum BC, Tilston-Lunel AM, Turcinovic I, Varelas X, Cardamone MD, Monti S, Emili A, Perissi V. Loss of G-Protein Pathway Suppressor 2 Promotes Tumor Growth Through Activation of AKT Signaling. Front Cell Dev Biol 2020;8:608044. [PMID: 33490071 DOI: 10.3389/fcell.2020.608044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 de Mey S, Dufait I, Jiang H, Corbet C, Wang H, Van De Gucht M, Kerkhove L, Law KL, Vandenplas H, Gevaert T, Feron O, De Ridder M. Dichloroacetate Radiosensitizes Hypoxic Breast Cancer Cells. Int J Mol Sci 2020;21:E9367. [PMID: 33316932 DOI: 10.3390/ijms21249367] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 Skaripa-Koukelli I, Hauton D, Walsby-Tickle J, Thomas E, Owen J, Lakshminarayanan A, Able S, McCullagh J, Carlisle RC, Vallis KA. 3-Bromopyruvate-mediated MCT1-dependent metabolic perturbation sensitizes triple negative breast cancer cells to ionizing radiation. Cancer Metab 2021;9:37. [PMID: 34649623 DOI: 10.1186/s40170-021-00273-6] [Reference Citation Analysis]
20 Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W, Yi Y, Zhang Q, Wu Y. Cancer-associated adipocytes: emerging supporters in breast cancer. J Exp Clin Cancer Res 2020;39:156. [PMID: 32787888 DOI: 10.1186/s13046-020-01666-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
21 van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021;11:653621. [PMID: 34041023 DOI: 10.3389/fonc.2021.653621] [Reference Citation Analysis]
22 Galindo CM, Oliveira Ganzella FAD, Klassen G, Souza Ramos EAD, Acco A. Nuances of PFKFB3 signaling in breast cancer. Clinical Breast Cancer 2022. [DOI: 10.1016/j.clbc.2022.01.002] [Reference Citation Analysis]
23 Yao H, He S. Multi‑faceted role of cancer‑associated adipocytes in the tumor microenvironment (Review). Mol Med Rep 2021;24:866. [PMID: 34676881 DOI: 10.3892/mmr.2021.12506] [Reference Citation Analysis]
24 Naik A, Decock J. Lactate Metabolism and Immune Modulation in Breast Cancer: A Focused Review on Triple Negative Breast Tumors. Front Oncol 2020;10:598626. [PMID: 33324565 DOI: 10.3389/fonc.2020.598626] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
25 Almanza A, Mnich K, Blomme A, Robinson CM, Rodriguez-Blanco G, Kierszniowska S, McGrath EP, Le Gallo M, Pilalis E, Swinnen JV, Chatziioannou A, Chevet E, Gorman AM, Samali A. Regulated IRE1α-dependent decay (RIDD)-mediated reprograming of lipid metabolism in cancer. Nat Commun 2022;13:2493. [PMID: 35524156 DOI: 10.1038/s41467-022-30159-0] [Reference Citation Analysis]
26 Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel) 2020;12:E2252. [PMID: 32806533 DOI: 10.3390/cancers12082252] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
27 Ghosh S, Javia A, Shetty S, Bardoliwala D, Maiti K, Banerjee S, Khopade A, Misra A, Sawant K, Bhowmick S. Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021;337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Ju W, Li N, Wang J, Yu N, Lei Z, Zhang L, Sun J, Chen L. Design and synthesis of novel mitochondria-targeted CDDO derivatives as potential anti-cancer agents. Bioorg Chem 2021;115:105249. [PMID: 34390971 DOI: 10.1016/j.bioorg.2021.105249] [Reference Citation Analysis]
29 Rasul A, Riaz A, Wei W, Sarfraz I, Hassan M, Li J, Asif F, Adem Ş, Bukhari SA, Asrar M, Li X. Mangifera indica Extracts as Novel PKM2 Inhibitors for Treatment of Triple Negative Breast Cancer. Biomed Res Int 2021;2021:5514669. [PMID: 34136566 DOI: 10.1155/2021/5514669] [Reference Citation Analysis]
30 Samec M, Liskova A, Koklesova L, Zhai K, Varghese E, Samuel SM, Šudomová M, Lucansky V, Kassayova M, Pec M, Biringer K, Brockmueller A, Kajo K, Hassan STS, Shakibaei M, Golubnitschaja O, Büsselberg D, Kubatka P. Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects. Cancers (Basel) 2021;13:3018. [PMID: 34208645 DOI: 10.3390/cancers13123018] [Reference Citation Analysis]
31 Babak MV, Chong KR, Rapta P, Zannikou M, Tang HM, Reichert L, Chang MR, Kushnarev V, Heffeter P, Meier-Menches SM, Lim ZC, Yap JY, Casini A, Balyasnikova IV, Ang WH. Interfering with Metabolic Profile of Triple-Negative Breast Cancers Using Rationally Designed Metformin Prodrugs. Angew Chem Int Ed Engl 2021;60:13405-13. [PMID: 33755286 DOI: 10.1002/anie.202102266] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
32 Shuvalov O, Fedorova O, Tananykina E, Gnennaya Y, Daks A, Petukhov A, Barlev NA. An Arthropod Hormone, Ecdysterone, Inhibits the Growth of Breast Cancer Cells via Different Mechanisms. Front Pharmacol 2020;11:561537. [PMID: 33192507 DOI: 10.3389/fphar.2020.561537] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Jaggupilli A, Ly S, Nguyen K, Anand V, Yuan B, El-Dana F, Yan Y, Arvanitis Z, Piyarathna DWB, Putluri N, Piwnica-Worms H, Manning HC, Andreeff M, Battula VL. Metabolic stress induces GD2+ cancer stem cell-like phenotype in triple-negative breast cancer. Br J Cancer 2021. [PMID: 34811508 DOI: 10.1038/s41416-021-01636-y] [Reference Citation Analysis]
34 Carneiro TJ, Araújo R, Vojtek M, Gonçalves-Monteiro S, de Carvalho ALMB, Marques MPM, Diniz C, Gil AM. Impact of the Pd2Spm (Spermine) Complex on the Metabolism of Triple-Negative Breast Cancer Tumors of a Xenograft Mouse Model. Int J Mol Sci 2021;22:10775. [PMID: 34639114 DOI: 10.3390/ijms221910775] [Reference Citation Analysis]
35 McAleese CE, Choudhury C, Butcher NJ, Minchin RF. Hypoxia-mediated drug resistance in breast cancers. Cancer Lett 2021;502:189-99. [PMID: 33278499 DOI: 10.1016/j.canlet.2020.11.045] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Koleckova M, Ehrmann J, Bouchal J, Janikova M, Brisudova A, Srovnal J, Staffova K, Svoboda M, Slaby O, Radova L, Vomackova K, Melichar B, Veverkova L, Kolar Z. Epithelial to mesenchymal transition and microRNA expression are associated with spindle and apocrine cell morphology in triple-negative breast cancer. Sci Rep 2021;11:5145. [PMID: 33664322 DOI: 10.1038/s41598-021-84350-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Kim H, Son S, Ko Y, Shin I. CTGF regulates cell proliferation, migration, and glucose metabolism through activation of FAK signaling in triple-negative breast cancer. Oncogene 2021;40:2667-81. [PMID: 33692467 DOI: 10.1038/s41388-021-01731-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]