1 |
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021;148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
2 |
Pandya JD, Leung LY, Hwang HM, Yang X, Deng-Bryant Y, Shear DA. Time-Course Evaluation of Brain Regional Mitochondrial Bioenergetics in a Pre-Clinical Model of Severe Penetrating Traumatic Brain Injury. J Neurotrauma 2021;38:2323-34. [PMID: 33544034 DOI: 10.1089/neu.2020.7379] [Reference Citation Analysis]
|
3 |
Li S, Sheng ZH. Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci 2021. [PMID: 34782781 DOI: 10.1038/s41583-021-00535-8] [Reference Citation Analysis]
|
4 |
Wyse ATS, Bobermin LD, Dos Santos TM, Quincozes-Santos A. Homocysteine and Gliotoxicity. Neurotox Res 2021;39:966-74. [PMID: 33786757 DOI: 10.1007/s12640-021-00359-5] [Reference Citation Analysis]
|
5 |
Sobotka L, Sobotka O. The predominant role of glucose as a building block and precursor of reducing equivalents. Curr Opin Clin Nutr Metab Care 2021;24:555-62. [PMID: 34456247 DOI: 10.1097/MCO.0000000000000786] [Reference Citation Analysis]
|
6 |
Boas SM, Joyce KL, Cowell RM. The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention. Antioxidants (Basel) 2021;11:8. [PMID: 35052512 DOI: 10.3390/antiox11010008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
7 |
Fernández-felipe J, Valencia-avezuela M, Merino B, Somoza B, Cano V, Sanz-martos AB, Frago LM, Fernández-alfonso MS, Ruiz-gayo M, Chowen JA. Effects of saturated versus unsaturated fatty acids on metabolism, gliosis, and hypothalamic leptin sensitivity in male mice. Nutritional Neuroscience. [DOI: 10.1080/1028415x.2022.2029294] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Seminotti B, Grings M, Tucci P, Leipnitz G, Saso L. Nuclear Factor Erythroid-2-Related Factor 2 Signaling in the Neuropathophysiology of Inherited Metabolic Disorders. Front Cell Neurosci 2021;15:785057. [PMID: 34955754 DOI: 10.3389/fncel.2021.785057] [Reference Citation Analysis]
|
9 |
Mayorga-Weber G, Rivera FJ, Castro MA. Neuron-glia (mis)interactions in brain energy metabolism during aging. J Neurosci Res 2022. [PMID: 35085408 DOI: 10.1002/jnr.25015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
10 |
Hocaoglu H, Sieber M. Mitochondrial respiratory quiescence: A new model for examining the role of mitochondrial metabolism in development. Semin Cell Dev Biol 2022:S1084-9521(22)00122-7. [PMID: 35450766 DOI: 10.1016/j.semcdb.2022.03.040] [Reference Citation Analysis]
|
11 |
Bouvier DS, Fixemer S, Heurtaux T, Jeannelle F, Frauenknecht KBM, Mittelbronn M. The Multifaceted Neurotoxicity of Astrocytes in Ageing and Age-Related Neurodegenerative Diseases: A Translational Perspective. Front Physiol 2022;13:814889. [DOI: 10.3389/fphys.2022.814889] [Reference Citation Analysis]
|
12 |
Zambrano K, Barba D, Castillo K, Robayo P, Argueta-Zamora D, Sanon S, Arizaga E, Caicedo A, Gavilanes AWD. The war against Alzheimer, the mitochondrion strikes back! Mitochondrion 2022:S1567-7249(22)00023-X. [PMID: 35337984 DOI: 10.1016/j.mito.2022.03.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Murlanova K, Jouroukhin Y, Huseynov S, Pletnikova O, Morales MJ, Guan Y, Baraban JM, Bergles DE, Pletnikov MV. Deficient mitochondrial respiration in astrocytes impairs trace fear conditioning and increases naloxone-precipitated aversion in morphine-dependent mice. Glia 2022. [PMID: 35275429 DOI: 10.1002/glia.24169] [Reference Citation Analysis]
|
14 |
Lushchak VI, Duszenko M, Gospodaryov DV, Garaschuk O. Oxidative Stress and Energy Metabolism in the Brain: Midlife as a Turning Point. Antioxidants (Basel) 2021;10:1715. [PMID: 34829586 DOI: 10.3390/antiox10111715] [Reference Citation Analysis]
|
15 |
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022. [DOI: 10.1016/j.mito.2022.03.002] [Reference Citation Analysis]
|
16 |
Zhang M, Wang Y, Bai Y, Dai L, Guo H. Monocarboxylate Transporter 1 May Benefit Cerebral Ischemia via Facilitating Lactate Transport From Glial Cells to Neurons. Front Neurol 2022;13:781063. [PMID: 35547368 DOI: 10.3389/fneur.2022.781063] [Reference Citation Analysis]
|
17 |
Zampieri BL, Costa ACS. Evidence of Energy Metabolism Alterations in Cultured Neonatal Astrocytes Derived from the Ts65Dn Mouse Model of Down Syndrome. Brain Sciences 2022;12:83. [DOI: 10.3390/brainsci12010083] [Reference Citation Analysis]
|
18 |
Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS, Yoo ID, Moon JS. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer's diseases. Redox Biol 2021;41:101947. [PMID: 33774476 DOI: 10.1016/j.redox.2021.101947] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|