BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Langert KA, Brey EM. Strategies for Targeted Delivery to the Peripheral Nerve. Front Neurosci 2018;12:887. [PMID: 30542262 DOI: 10.3389/fnins.2018.00887] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 He X, Yang J, Ji M, Chen Y, Chen Y, Li H, Wang H. A potential delivery system based on cholera toxin: A macromolecule carrier with multiple activities. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.050] [Reference Citation Analysis]
2 Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021;6:4141-60. [PMID: 33997498 DOI: 10.1016/j.bioactmat.2021.04.019] [Cited by in F6Publishing: 23] [Reference Citation Analysis]
3 Wu P, Tong Z, Luo L, Zhao Y, Chen F, Li Y, Huselstein C, Ye Q, Ye Q, Chen Y. Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair. Bioact Mater 2021;6:3515-27. [PMID: 33842738 DOI: 10.1016/j.bioactmat.2021.03.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
4 Rayner MLD, Grillo A, Williams GR, Tawfik E, Zhang T, Volitaki C, Craig DQM, Healy J, Phillips JB. Controlled local release of PPARγ agonists from biomaterials to treat peripheral nerve injury. J Neural Eng 2020;17:046030. [PMID: 32780719 DOI: 10.1088/1741-2552/aba7cc] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
5 Luvisetto S. Botulinum Toxin and Neuronal Regeneration after Traumatic Injury of Central and Peripheral Nervous System. Toxins (Basel) 2020;12:E434. [PMID: 32630737 DOI: 10.3390/toxins12070434] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
6 Stubbs EB Jr. Targeting the blood-nerve barrier for the management of immune-mediated peripheral neuropathies. Exp Neurol 2020;331:113385. [PMID: 32562668 DOI: 10.1016/j.expneurol.2020.113385] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
7 Labroo P, Ho S, Sant H, Shea JE, Agarwal J, Gale B. Modeling diffusion-based drug release inside a nerve conduit in vitro and in vivo validation study. Drug Deliv Transl Res 2021;11:154-68. [PMID: 32367424 DOI: 10.1007/s13346-020-00755-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020;12:E192. [PMID: 32102252 DOI: 10.3390/pharmaceutics12020192] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
9 Del Grosso A, Galliani M, Angella L, Santi M, Tonazzini I, Parlanti G, Signore G, Cecchini M. Brain-targeted enzyme-loaded nanoparticles: A breach through the blood-brain barrier for enzyme replacement therapy in Krabbe disease. Sci Adv 2019;5:eaax7462. [PMID: 31799395 DOI: 10.1126/sciadv.aax7462] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]