BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brandt R, Trushina NI, Bakota L. Much More Than a Cytoskeletal Protein: Physiological and Pathological Functions of the Non-microtubule Binding Region of Tau. Front Neurol 2020;11:590059. [PMID: 33193056 DOI: 10.3389/fneur.2020.590059] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Baltissen D, Bold CS, Rehra L, Banićević M, Fricke J, Just J, Ludewig S, Buchholz CJ, Korte M, Müller UC. APPsα rescues CDK5 and GSK3β dysregulation and restores normal spine density in Tau transgenic mice. Front Cell Neurosci 2023;17. [DOI: 10.3389/fncel.2023.1106176] [Reference Citation Analysis]
2 Toyos-rodríguez C, García-alonso FJ, de la Escosura-muñiz A. Towards the maximization of nanochannels blockage through antibody-antigen charge control: application for the detection of an Alzheimer’s disease biomarker. Sensors and Actuators B: Chemical 2023. [DOI: 10.1016/j.snb.2023.133394] [Reference Citation Analysis]
3 Corsi A, Bombieri C, Valenti MT, Romanelli MG. Tau Isoforms: Gaining Insight into MAPT Alternative Splicing. Int J Mol Sci 2022;23. [PMID: 36499709 DOI: 10.3390/ijms232315383] [Reference Citation Analysis]
4 Fischer I. Evolutionary perspective of Big tau structure: 4a exon variants of MAPT. Front Mol Neurosci 2022;15. [DOI: 10.3389/fnmol.2022.1019999] [Reference Citation Analysis]
5 Pinzi L, Conze C, Bisi N, Torre GD, Monteiro-abreu N, Trushina NI, Soliman A, Krusenbaum A, Dolouei MK, Hellwig A, Christodoulou MS, Passarella D, Bakota L, Rastelli G, Brandt R. Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule regulation.. [DOI: 10.1101/2022.10.31.514565] [Reference Citation Analysis]
6 Conze C, Trushina NI, Holtmannspötter M, Rierola M, Attanasio S, Bakota L, Piehler J, Brandt R. Super-resolution imaging and quantitative analysis of microtubule arrays in model neurons show that epothilone D increases the density but decreases the length and straightness of microtubules in axon-like processes. Brain Research Bulletin 2022;190:234-243. [DOI: 10.1016/j.brainresbull.2022.10.008] [Reference Citation Analysis]
7 Miranda FD. Taus Influence on Neurodegenerative Diseases (Alzheimer’s) and non Adherence to the Neuroplasticity Principle. bpstalk 2022;1:50-57. [DOI: 10.53841/bpstalk.2022.1.103.50] [Reference Citation Analysis]
8 Padmanabhan P, Kneynsberg A, Cruz E, Amor R, Sibarita JB, Götz J. Single-molecule imaging reveals Tau trapping at nanometer-sized dynamic hot spots near the plasma membrane that persists after microtubule perturbation and cholesterol depletion. EMBO J 2022;:e111265. [PMID: 36004506 DOI: 10.15252/embj.2022111265] [Reference Citation Analysis]
9 Rierola M, Trushina NI, Monteiro-abreu N, Conze C, Holtmannspötter M, Kurre R, Holzer M, Arendt T, Heinisch JJ, Brandt R, Bakota L. Tau and α-synuclein shape microtubule organization and microtubule-dependent transport in neuronal dendrites.. [DOI: 10.1101/2022.06.09.495530] [Reference Citation Analysis]
10 Berrocal M, Mata AM. The plasma membrane Ca2+-ATPase (PMCA), a molecular target for tau-induced cytosolic calcium dysregulation. Neuroscience 2022:S0306-4522(22)00198-1. [PMID: 35469971 DOI: 10.1016/j.neuroscience.2022.04.016] [Reference Citation Analysis]
11 Cecon E, Oishi A, Luka M, Ndiaye-lobry D, François A, Panayi F, Dam J, Machado P, Jockers R. Novel repertoire of tau biosensors to monitor pathological tau transformation and seeding activity in living cells.. [DOI: 10.1101/2022.03.18.484918] [Reference Citation Analysis]
12 Ruiz-Gabarre D, Carnero-Espejo A, Ávila J, García-Escudero V. What's in a Gene? The Outstanding Diversity of MAPT. Cells 2022;11:840. [PMID: 35269461 DOI: 10.3390/cells11050840] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Padmanabhan P, Kneynsberg A, Gonzalez EC, Amor R, Sibarita J, Götz J. Tau forms dynamic hot spots that are resistant to microtubule perturbations and cholesterol depletion.. [DOI: 10.1101/2022.02.04.479198] [Reference Citation Analysis]
14 Venkatramani A, Mukherjee S, Kumari A, Panda D. Shikonin impedes phase separation and aggregation of tau and protects SH-SY5Y cells from the toxic effects of tau oligomers. Int J Biol Macromol 2022:S0141-8130(22)00195-7. [PMID: 35120943 DOI: 10.1016/j.ijbiomac.2022.01.172] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Tolkovsky AM, Spillantini MG. Tau aggregation and its relation to selected forms of neuronal cell death. Essays Biochem 2021:EBC20210030. [PMID: 34897457 DOI: 10.1042/EBC20210030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Caroux E, Redeker V, Madiona K, Melki R. Structural mapping techniques distinguish the surfaces of fibrillar 1N3R and 1N4R human tau. J Biol Chem 2021;297:101252. [PMID: 34592311 DOI: 10.1016/j.jbc.2021.101252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021;22:9207. [PMID: 34502116 DOI: 10.3390/ijms22179207] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
18 Pinzi L, Tinivella A, Rastelli G. Chemoinformatics Analyses of Tau Ligands Reveal Key Molecular Requirements for the Identification of Potential Drug Candidates against Tauopathies. Molecules 2021;26:5039. [PMID: 34443629 DOI: 10.3390/molecules26165039] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Wang D, Huang X, Yan L, Zhou L, Yan C, Wu J, Su Z, Huang Y. The Structure Biology of Tau and Clue for Aggregation Inhibitor Design. Protein J 2021;40:656-68. [PMID: 34401998 DOI: 10.1007/s10930-021-10017-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Bachstetter AD, Garrett FG, Jicha GA, Nelson PT. Space-occupying brain lesions, trauma-related tau astrogliopathy, and ARTAG: a report of two cases and a literature review. Acta Neuropathol Commun 2021;9:49. [PMID: 33757579 DOI: 10.1186/s40478-021-01152-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
21 Mueller RL, Combs B, Alhadidy MM, Brady ST, Morfini GA, Kanaan NM. Tau: A Signaling Hub Protein. Front Mol Neurosci 2021;14:647054. [PMID: 33815057 DOI: 10.3389/fnmol.2021.647054] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
22 Houben S, Homa M, Yilmaz Z, Leroy K, Brion JP, Ando K. Tau Pathology and Adult Hippocampal Neurogenesis: What Tau Mouse Models Tell us? Front Neurol 2021;12:610330. [PMID: 33643196 DOI: 10.3389/fneur.2021.610330] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Amadoro G, Latina V, Calissano P. A long story for a short peptide: therapeutic efficacy of a cleavage-specific tau antibody. Neural Regen Res 2021;16:2417-9. [PMID: 33907025 DOI: 10.4103/1673-5374.313043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]