BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lovati AB, D'Arrigo D, Odella S, Tos P, Geuna S, Raimondo S. Nerve Repair Using Decellularized Nerve Grafts in Rat Models. A Review of the Literature. Front Cell Neurosci 2018;12:427. [PMID: 30510503 DOI: 10.3389/fncel.2018.00427] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Yu T, Ao Q, Ao T, Ahmad MA, Wang A, Xu Y, Zhang Z, Zhou Q. Preparation and assessment of an optimized multichannel acellular nerve allograft for peripheral nerve regeneration. Bioengineering & Transla Med 2022. [DOI: 10.1002/btm2.10435] [Reference Citation Analysis]
2 Milek D, Echternacht SR, LaGuardia J, LaBarge D, Turpin L, Grobbelaar A, Leckenby JI. Evaluation of peripheral nerve regeneration in Murphy Roths Large mouse strain following transection injury. Regen Med 2022. [PMID: 36255077 DOI: 10.2217/rme-2022-0098] [Reference Citation Analysis]
3 Contreras E, Bolívar S, Nieto-nicolau N, Fariñas O, López-chicón P, Navarro X, Udina E. A novel decellularized nerve graft for repairing peripheral nerve long gap injury in the rat. Cell Tissue Res. [DOI: 10.1007/s00441-022-03682-1] [Reference Citation Analysis]
4 Kuna VK, Lundgren A, Anerillas LO, Kelk P, Brohlin M, Wiberg M, Kingham PJ, Novikova LN, Andersson G, Novikov LN. Efficacy of Nerve-Derived Hydrogels to Promote Axon Regeneration Is Influenced by the Method of Tissue Decellularization. Int J Mol Sci 2022;23:8746. [PMID: 35955880 DOI: 10.3390/ijms23158746] [Reference Citation Analysis]
5 Gregory E, Baek IH, Ala-Kokko N, Dugan R, Pinzon-Herrera L, Almodóvar J, Song YH. Peripheral Nerve Decellularization for In Vitro Extracellular Matrix Hydrogel Use: A Comparative Study. ACS Biomater Sci Eng 2022;8:2574-88. [PMID: 35649243 DOI: 10.1021/acsbiomaterials.2c00034] [Reference Citation Analysis]
6 Jana S, Das P, Mukherjee J, Banerjee D, Ghosh PR, Kumar Das P, Bhattacharya RN, Nandi SK. Waste-derived biomaterials as building blocks in the biomedical field. J Mater Chem B 2022;10:489-505. [PMID: 35018942 DOI: 10.1039/d1tb02125g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Kuna VK, Kingham PJ. Peripheral nerve tissue engineering. Tissue Engineering Using Ceramics and Polymers 2022. [DOI: 10.1016/b978-0-12-820508-2.00006-4] [Reference Citation Analysis]
8 Koopman JE, Duraku LS, Jong TD, de Vries RB, Zuidam JM, Hundepool CA. A systematic review and meta-analysis on the use of fibrin glue in peripheral nerve repair: Can we just glue it? Journal of Plastic, Reconstructive & Aesthetic Surgery 2022. [DOI: 10.1016/j.bjps.2022.01.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Prahm C, Heinzel J, Kolbenschlag J. Blood Supply and Microcirculation of the Peripheral Nerve. Peripheral Nerve Tissue Engineering and Regeneration 2022. [DOI: 10.1007/978-3-030-21052-6_21] [Reference Citation Analysis]
10 Chato-astrain J, García-garcía ÓD, Campos F, Sánchez-porras D, Carriel V. Basic Nerve Histology and Histological Analyses Following Peripheral Nerve Repair and Regeneration. Peripheral Nerve Tissue Engineering and Regeneration 2022. [DOI: 10.1007/978-3-030-21052-6_14] [Reference Citation Analysis]
11 Topuz B, Aydin HM. Preparation of decellularized optic nerve grafts. Artif Organs 2021. [PMID: 34714559 DOI: 10.1111/aor.14098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Roballo KCS, Gigley JP, Smith TA, Bittner GD, Bushman JS. Functional and immunological peculiarities of peripheral nerve allografts. Neural Regen Res 2022;17:721-7. [PMID: 34472457 DOI: 10.4103/1673-5374.322445] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Yan Z, Qian Y, Fan C. Biomimicry in 3D printing design: implications for peripheral nerve regeneration. Regen Med 2021;16:683-701. [PMID: 34189955 DOI: 10.2217/rme-2020-0182] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
14 Chuang MH, Ho LH, Kuo TF, Sheu SY, Liu YH, Lin PC, Tsai YC, Yang CH, Chu CM, Lin SZ. Regenerative Potential of Platelet-Rich Fibrin Releasate Combined with Adipose Tissue-Derived Stem Cells in a Rat Sciatic Nerve Injury Model. Cell Transplant 2020;29:963689720919438. [PMID: 32538130 DOI: 10.1177/0963689720919438] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Saffari S, Saffari TM, Moore AM, Shin AY. Peripheral Nerve Basic Science Research-What Is Important for Hand Surgeons to Know? J Hand Surg Am 2021;46:608-18. [PMID: 33867203 DOI: 10.1016/j.jhsa.2021.02.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 El Soury M, García-García ÓD, Moretti M, Perroteau I, Raimondo S, Lovati AB, Carriel V. Comparison of Decellularization Protocols to Generate Peripheral Nerve Grafts: A Study on Rat Sciatic Nerves. Int J Mol Sci 2021;22:2389. [PMID: 33673602 DOI: 10.3390/ijms22052389] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
17 García-García ÓD, El Soury M, González-Quevedo D, Sánchez-Porras D, Chato-Astrain J, Campos F, Carriel V. Histological, Biomechanical, and Biological Properties of Genipin-Crosslinked Decellularized Peripheral Nerves. Int J Mol Sci 2021;22:E674. [PMID: 33445493 DOI: 10.3390/ijms22020674] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
18 Chato-astrain J, García-garcía ÓD, Campos F, Sánchez-porras D, Carriel V. Basic Nerve Histology and Histological Analyses Following Peripheral Nerve Repair and Regeneration. Peripheral Nerve Tissue Engineering and Regeneration 2021. [DOI: 10.1007/978-3-030-06217-0_14-1] [Reference Citation Analysis]
19 Prahm C, Heinzel J, Kolbenschlag J. Blood Supply and Microcirculation of the Peripheral Nerve. Peripheral Nerve Tissue Engineering and Regeneration 2021. [DOI: 10.1007/978-3-030-06217-0_21-1] [Reference Citation Analysis]
20 Puhl DL, Funnell JL, Nelson DW, Gottipati MK, Gilbert RJ. Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering (Basel) 2020;8:4. [PMID: 33383759 DOI: 10.3390/bioengineering8010004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
21 Carvalho CR, Reis RL, Oliveira JM. Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. Adv Exp Med Biol 2020;1249:173-201. [PMID: 32602098 DOI: 10.1007/978-981-15-3258-0_12] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Panzer KV, Burrell JC, Helm KVT, Purvis EM, Zhang Q, Le AD, O'Donnell JC, Cullen DK. Tissue Engineered Bands of Büngner for Accelerated Motor and Sensory Axonal Outgrowth. Front Bioeng Biotechnol 2020;8:580654. [PMID: 33330416 DOI: 10.3389/fbioe.2020.580654] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
23 Yu T, Wen L, He J, Xu Y, Li T, Wang W, Ma Y, Ahmad MA, Tian X, Fan J, Wang X, Hagiwara H, Ao Q. Fabrication and evaluation of an optimized acellular nerve allograft with multiple axial channels. Acta Biomater 2020;115:235-49. [PMID: 32771587 DOI: 10.1016/j.actbio.2020.07.059] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
24 Tada K, Nakada M, Matsuta M, Murai A, Hayashi K, Tsuchiya H. Enhanced nerve autograft using stromal vascular fraction. Eur J Orthop Surg Traumatol 2021;31:183-8. [DOI: 10.1007/s00590-020-02758-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Fregnan F, Muratori L, Bassani GA, Crosio A, Biagiotti M, Vincoli V, Carta G, Pierimarchi P, Geuna S, Alessandrino A, Freddi G, Ronchi G. Preclinical Validation of SilkBridgeTM for Peripheral Nerve Regeneration. Front Bioeng Biotechnol 2020;8:835. [PMID: 32850714 DOI: 10.3389/fbioe.2020.00835] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
26 Wüthrich T, Lese I, Haberthür D, Zubler C, Hlushchuk R, Hewer E, Maistriaux L, Gianello P, Lengelé B, Rieben R, Vögelin E, Olariu R, Duisit J, Taddeo A. Development of vascularized nerve scaffold using perfusion-decellularization and recellularization. Mater Sci Eng C Mater Biol Appl 2020;117:111311. [PMID: 32919672 DOI: 10.1016/j.msec.2020.111311] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
27 Raffa P, Scattolini V, Gerli MFM, Perin S, Cui M, De Coppi P, Elvassore N, Caccin P, Luni C, Urciuolo A. Decellularized skeletal muscles display neurotrophic effects in three-dimensional organotypic cultures. Stem Cells Transl Med 2020;9:1233-43. [PMID: 32578968 DOI: 10.1002/sctm.20-0090] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
28 Chato-Astrain J, Philips C, Campos F, Durand-Herrera D, García-García OD, Roosens A, Alaminos M, Campos A, Carriel V. Detergent-based decellularized peripheral nerve allografts: An in vivo preclinical study in the rat sciatic nerve injury model. J Tissue Eng Regen Med 2020;14:789-806. [PMID: 32293801 DOI: 10.1002/term.3043] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
29 Tada K, Nakada M, Matsuta M, Yamauchi D, Ikeda K, Tsuchiya H. Long-Term Outcomes of Donor Site Morbidity After Sural Nerve Graft Harvesting. Journal of Hand Surgery Global Online 2020;2:74-6. [DOI: 10.1016/j.jhsg.2020.01.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Dietzmeyer N, Förthmann M, Grothe C, Haastert-Talini K. Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches. Neural Regen Res 2020;15:1421-31. [PMID: 31997801 DOI: 10.4103/1673-5374.271668] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
31 Vela FJ, Martínez-Chacón G, Ballestín A, Campos JL, Sánchez-Margallo FM, Abellán E. Animal models used to study direct peripheral nerve repair: a systematic review. Neural Regen Res 2020;15:491-502. [PMID: 31571661 DOI: 10.4103/1673-5374.266068] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
32 Fu XM, Wang Y, Fu WL, Liu DH, Zhang CY, Wang QL, Tong XJ. The Combination of Adipose-derived Schwann-like Cells and Acellular Nerve Allografts Promotes Sciatic Nerve Regeneration and Repair through the JAK2/STAT3 Signaling Pathway in Rats. Neuroscience 2019;422:134-45. [PMID: 31682951 DOI: 10.1016/j.neuroscience.2019.10.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
33 Li WY, Zhu GY, Yue WJ, Sun GD, Zhu XF, Wang Y. KLF7 overexpression in bone marrow stromal stem cells graft transplantation promotes sciatic nerve regeneration. J Neural Eng 2019;16:056011. [PMID: 31296795 DOI: 10.1088/1741-2552/ab3188] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]