BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang L, Xia B, Liu Z, Cao Q, Huang J, Luo Z. Superparamagnetic Iron Oxide Nanoparticle-Mediated Forces Enhance the Migration of Schwann Cells Across the Astrocyte-Schwann Cell Boundary In vitro. Front Cell Neurosci 2017;11:83. [PMID: 28400720 DOI: 10.3389/fncel.2017.00083] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
Number Citing Articles
1 Hu Y, Li D, Wei H, Zhou S, Chen W, Yan X, Cai J, Chen X, Chen B, Liao M, Chai R, Tang M. Neurite Extension and Orientation of Spiral Ganglion Neurons Can Be Directed by Superparamagnetic Iron Oxide Nanoparticles in a Magnetic Field. Int J Nanomedicine 2021;16:4515-26. [PMID: 34239302 DOI: 10.2147/IJN.S313673] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Marinval N, Chew SY. Mechanotransduction assays for neural regeneration strategies: A focus on glial cells. APL Bioeng 2021;5:021505. [PMID: 33948526 DOI: 10.1063/5.0037814] [Reference Citation Analysis]
3 Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. Nanomaterials (Basel) 2021;11:2337. [PMID: 34578651 DOI: 10.3390/nano11092337] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Gahl TJ, Kunze A. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function. Front Neurosci 2018;12:299. [PMID: 29867315 DOI: 10.3389/fnins.2018.00299] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
5 Hong Q, Song H, Lan Chi NT, Brindhadevi K. Numerous nanoparticles as drug delivery system to control secondary immune response and promote spinal cord injury regeneration. Process Biochemistry 2022;112:145-53. [DOI: 10.1016/j.procbio.2021.11.025] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Li Y, Shen PP, Wang B. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy. Neural Regen Res 2021;16:1500-9. [PMID: 33433463 DOI: 10.4103/1673-5374.303013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Funnell JL, Balouch B, Gilbert RJ. Magnetic Composite Biomaterials for Neural Regeneration. Front Bioeng Biotechnol 2019;7:179. [PMID: 31404143 DOI: 10.3389/fbioe.2019.00179] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
8 Mamani JB, Souza TKF, Nucci MP, Oliveira FA, Nucci LP, Alves AH, Rego GNA, Marti L, Gamarra LF. In Vitro Evaluation of Hyperthermia Magnetic Technique Indicating the Best Strategy for Internalization of Magnetic Nanoparticles Applied in Glioblastoma Tumor Cells. Pharmaceutics 2021;13:1219. [PMID: 34452180 DOI: 10.3390/pharmaceutics13081219] [Reference Citation Analysis]
9 Ficiarà E, Ansari SA, Argenziano M, Cangemi L, Monge C, Cavalli R, D'Agata F. Beyond Oncological Hyperthermia: Physically Drivable Magnetic Nanobubbles as Novel Multipurpose Theranostic Carriers in the Central Nervous System. Molecules 2020;25:E2104. [PMID: 32365941 DOI: 10.3390/molecules25092104] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
10 Zhao YZ, Chen R, Xue PP, Luo LZ, Zhong B, Tong MQ, Chen B, Yao Q, Yuan JD, Xu HL. Magnetic PLGA microspheres loaded with SPIONs promoted the reconstruction of bone defects through regulating the bone mesenchymal stem cells under an external magnetic field. Mater Sci Eng C Mater Biol Appl 2021;122:111877. [PMID: 33641893 DOI: 10.1016/j.msec.2021.111877] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
11 Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019;148:308-43. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
12 Gao J, Xia B, Li S, Huang L, Ma T, Shi X, Luo K, Yang Y, Zhao L, Zhang H, Luo B, Huang J. Magnetic Field Promotes Migration of Schwann Cells with Chondroitinase ABC (ChABC)-Loaded Superparamagnetic Nanoparticles Across Astrocyte Boundary in vitro. Int J Nanomedicine 2020;15:315-32. [PMID: 32021182 DOI: 10.2147/IJN.S227328] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
13 Funnell JL, Ziemba AM, Nowak JF, Awada H, Prokopiou N, Samuel J, Guari Y, Nottelet B, Gilbert RJ. Assessing the combination of magnetic field stimulation, iron oxide nanoparticles, and aligned electrospun fibers for promoting neurite outgrowth from dorsal root ganglia in vitro. Acta Biomater 2021;131:302-13. [PMID: 34271170 DOI: 10.1016/j.actbio.2021.06.049] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
14 Singh I, Lacko CS, Zhao Z, Schmidt CE, Rinaldi C. Preparation and evaluation of microfluidic magnetic alginate microparticles for magnetically templated hydrogels. J Colloid Interface Sci 2020;561:647-58. [PMID: 31761469 DOI: 10.1016/j.jcis.2019.11.040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Xia B, Gao J, Li S, Huang L, Zhu L, Ma T, Zhao L, Yang Y, Luo K, Shi X, Mei L, Zhang H, Zheng Y, Lu L, Luo Z, Huang J. Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p. Theranostics 2020;10:8974-95. [PMID: 32802175 DOI: 10.7150/thno.44912] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]