BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Boesmans W, Martens MA, Weltens N, Hao MM, Tack J, Cirillo C, Vanden Berghe P. Imaging neuron-glia interactions in the enteric nervous system. Front Cell Neurosci. 2013;7:183. [PMID: 24155689 DOI: 10.3389/fncel.2013.00183] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 Swaminathan M, Hill-Yardin EL, Bornstein JC, Foong JPP. Endogenous Glutamate Excites Myenteric Calbindin Neurons by Activating Group I Metabotropic Glutamate Receptors in the Mouse Colon. Front Neurosci 2019;13:426. [PMID: 31118881 DOI: 10.3389/fnins.2019.00426] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
2 McClain JL, Fried DE, Gulbransen BD. Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell Mol Gastroenterol Hepatol. 2015;1:631-645. [PMID: 26693173 DOI: 10.1016/j.jcmgh.2015.08.004] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 7.3] [Reference Citation Analysis]
3 Navoly G, McCann CJ. Dynamic integration of enteric neural stem cells in ex vivo organotypic colon cultures. Sci Rep 2021;11:15889. [PMID: 34354183 DOI: 10.1038/s41598-021-95434-4] [Reference Citation Analysis]
4 Ochoa-Cortes F, Turco F, Linan-Rico A, Soghomonyan S, Whitaker E, Wehner S, Cuomo R, Christofi FL. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases. Inflamm Bowel Dis. 2016;22:433-449. [PMID: 26689598 DOI: 10.1097/MIB.0000000000000667] [Cited by in Crossref: 74] [Cited by in F6Publishing: 46] [Article Influence: 12.3] [Reference Citation Analysis]
5 Fortea M, Jain P, Demedts I, Tack J, Vanuytsel T, Cirillo C, Vanden Berghe P. Live Imaging of Primary Neurons in Long-Term Cryopreserved Human Nerve Tissue. eNeuro 2021;8:ENEURO. [PMID: 34759050 DOI: 10.1523/ENEURO.0388-21.2021] [Reference Citation Analysis]
6 Boesmans W, Nash A, Tasnády KR, Yang W, Stamp LA, Hao MM. Development, Diversity, and Neurogenic Capacity of Enteric Glia. Front Cell Dev Biol 2022;9:775102. [DOI: 10.3389/fcell.2021.775102] [Reference Citation Analysis]
7 Cirillo C, Bessissow T, Desmet A, Vanheel H, Tack J, Vanden Berghe P. Evidence for Neuronal and Structural Changes in Submucous Ganglia of Patients With Functional Dyspepsia. American Journal of Gastroenterology 2015;110:1205-15. [DOI: 10.1038/ajg.2015.158] [Cited by in Crossref: 81] [Cited by in F6Publishing: 71] [Article Influence: 11.6] [Reference Citation Analysis]
8 Xiao WD, Peng K, Yang H. Enteric glial cells: An emerging key player in intestinal homeostasis modulation under physiological and pathological conditions. Shijie Huaren Xiaohua Zazhi 2016; 24(25): 3657-3665 [DOI: 10.11569/wcjd.v24.i25.3657] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Kim HJ. The New Calcium Imaging Trend (Front Cell Neurosci 2015;9:436). J Neurogastroenterol Motil 2016;22:346-7. [PMID: 26876959 DOI: 10.5056/jnm15197] [Reference Citation Analysis]
10 Arbogast LA, Ben-Jonathan N. Tyrosine hydroxylase in the stalk-median eminence and posterior pituitary is inactivated only during the plateau phase of the preovulatory prolactin surge. Endocrinology. 1989;125:667-674. [PMID: 2568925 DOI: 10.1172/jci76303] [Cited by in Crossref: 100] [Cited by in F6Publishing: 62] [Article Influence: 3.0] [Reference Citation Analysis]
11 Fung C, Koussoulas K, Unterweger P, Allen AM, Bornstein JC, Foong JPP. Cholinergic Submucosal Neurons Display Increased Excitability Following in Vivo Cholera Toxin Exposure in Mouse Ileum. Front Physiol 2018;9:260. [PMID: 29618987 DOI: 10.3389/fphys.2018.00260] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
12 Smith-Edwards KM, Najjar SA, Edwards BS, Howard MJ, Albers KM, Davis BM. Extrinsic Primary Afferent Neurons Link Visceral Pain to Colon Motility Through a Spinal Reflex in Mice. Gastroenterology 2019;157:522-536.e2. [PMID: 31075226 DOI: 10.1053/j.gastro.2019.04.034] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
13 Boesmans W, Hao MM, Fung C, Li Z, Van den Haute C, Tack J, Pachnis V, Vanden Berghe P. Structurally defined signaling in neuro-glia units in the enteric nervous system. Glia 2019;67:1167-78. [PMID: 30730592 DOI: 10.1002/glia.23596] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
14 Margiotta JF, Smith-Edwards KM, Nestor-Kalinoski A, Davis BM, Albers KM, Howard MJ. Synaptic Components, Function and Modulation Characterized by GCaMP6f Ca2+ Imaging in Mouse Cholinergic Myenteric Ganglion Neurons. Front Physiol 2021;12:652714. [PMID: 34408655 DOI: 10.3389/fphys.2021.652714] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Clairembault T, Kamphuis W, Leclair-Visonneau L, Rolli-Derkinderen M, Coron E, Neunlist M, Hol EM, Derkinderen P. Enteric GFAP expression and phosphorylation in Parkinson's disease. J Neurochem. 2014;130:805-815. [PMID: 24749759 DOI: 10.1111/jnc.12742] [Cited by in Crossref: 80] [Cited by in F6Publishing: 79] [Article Influence: 10.0] [Reference Citation Analysis]
16 Ko SY, Price JT, Blatch GL, Nurgali K. Netrin-1-like-immunoreactivity Coexpresses With DCC and Has a Differential Level in the Myenteric Cholinergic and Nitrergic Neurons of the Adult Mouse Colon. J Histochem Cytochem 2019;67:335-49. [PMID: 30576266 DOI: 10.1369/0022155418819821] [Reference Citation Analysis]
17 Fried DE, Gulbransen BD. In situ Ca2+ imaging of the enteric nervous system. J Vis Exp 2015. [PMID: 25741967 DOI: 10.3791/52506] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 0.6] [Reference Citation Analysis]
18 Wang W. Optogenetic manipulation of ENS - The brain in the gut. Life Sci 2018;192:18-25. [PMID: 29155296 DOI: 10.1016/j.lfs.2017.11.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
19 Delvalle NM, Fried DE, Rivera-Lopez G, Gaudette L, Gulbransen BD. Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol. 2018;315:G473-G483. [PMID: 29927320 DOI: 10.1152/ajpgi.00155.2018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
20 Li Z, Fung C, Vanden Berghe P. Electric Activity and Neuronal Components in the Gut Wall. Encyclopedia of Gastroenterology. Elsevier; 2020. pp. 133-45. [DOI: 10.1016/b978-0-12-801238-3.65886-5] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Johnson AC, Louwies T, Ligon CO, Greenwood-Van Meerveld B. Enlightening the frontiers of neurogastroenterology through optogenetics. Am J Physiol Gastrointest Liver Physiol 2020;319:G391-9. [PMID: 32755304 DOI: 10.1152/ajpgi.00384.2019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Coelho-Aguiar Jde M, Bon-Frauches AC, Gomes AL, Veríssimo CP, Aguiar DP, Matias D, Thomasi BB, Gomes AS, Brito GA, Moura-Neto V. The enteric glia: identity and functions. Glia. 2015;63:921-935. [PMID: 25703790 DOI: 10.1002/glia.22795] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 7.7] [Reference Citation Analysis]
23 Nestor-Kalinoski A, Smith-Edwards KM, Meerschaert K, Margiotta JF, Rajwa B, Davis BM, Howard MJ. Unique Neural Circuit Connectivity of Mouse Proximal, Middle, and Distal Colon Defines Regional Colonic Motor Patterns. Cell Mol Gastroenterol Hepatol 2021:S2352-345X(21)00183-1. [PMID: 34509687 DOI: 10.1016/j.jcmgh.2021.08.016] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Vanden Berghe P. Advanced 3D Optical Microscopy in ENS Research. In: Brierley S, Costa M, editors. The Enteric Nervous System. Cham: Springer International Publishing; 2016. pp. 193-9. [DOI: 10.1007/978-3-319-27592-5_18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
25 Neunlist M, Rolli-Derkinderen M, Latorre R, Van Landeghem L, Coron E, Derkinderen P, De Giorgio R. Enteric glial cells: recent developments and future directions. Gastroenterology. 2014;147:1230-1237. [PMID: 25305504 DOI: 10.1053/j.gastro.2014.09.040] [Cited by in Crossref: 87] [Cited by in F6Publishing: 82] [Article Influence: 10.9] [Reference Citation Analysis]
26 Hao MM, Foong JP, Bornstein JC, Li ZL, Vanden Berghe P, Boesmans W. Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016;417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 7.3] [Reference Citation Analysis]
27 Fung C, Boesmans W, Cirillo C, Foong JPP, Bornstein JC, Vanden Berghe P. VPAC Receptor Subtypes Tune Purinergic Neuron-to-Glia Communication in the Murine Submucosal Plexus. Front Cell Neurosci 2017;11:118. [PMID: 28487635 DOI: 10.3389/fncel.2017.00118] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
28 Coquenlorge S, Van Landeghem L, Jaulin J, Cenac N, Vergnolle N, Duchalais E, Neunlist M, Rolli-Derkinderen M. The arachidonic acid metabolite 11β-ProstaglandinF2α controls intestinal epithelial healing: deficiency in patients with Crohn's disease. Sci Rep 2016;6:25203. [PMID: 27140063 DOI: 10.1038/srep25203] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
29 Bertrand PP, Polglaze KE, Chen H, Sandow SL, Walduck A, Jenkins TA, Bertrand RL, Lomax AE, Liu L. Excitability and Synaptic Transmission in the Enteric Nervous System: Does Diet Play a Role? Adv Exp Med Biol 2016;891:201-11. [PMID: 27379647 DOI: 10.1007/978-3-319-27592-5_19] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
30 Uesaka T, Young HM, Pachnis V, Enomoto H. Development of the intrinsic and extrinsic innervation of the gut. Dev Biol 2016;417:158-67. [PMID: 27112528 DOI: 10.1016/j.ydbio.2016.04.016] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 9.8] [Reference Citation Analysis]
31 Kerekes BP, Tóth K, Kaszás A, Chiovini B, Szadai Z, Szalay G, Pálfi D, Bagó A, Spitzer K, Rózsa B, Ulbert I, Wittner L. Combined two-photon imaging, electrophysiological, and anatomical investigation of the human neocortex in vitro. Neurophotonics 2014;1:011013. [PMID: 26157969 DOI: 10.1117/1.NPh.1.1.011013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
32 Lowette K, Tack J, Vanden Berghe P. Role of corticosterone in the murine enteric nervous system during fasting. Am J Physiol Gastrointest Liver Physiol 2014;307:G905-13. [PMID: 25214399 DOI: 10.1152/ajpgi.00233.2014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
33 Foong JP, Hirst CS, Hao MM, McKeown SJ, Boesmans W, Young HM, Bornstein JC, Vanden Berghe P. Changes in Nicotinic Neurotransmission during Enteric Nervous System Development. J Neurosci. 2015;35:7106-7115. [PMID: 25948261 DOI: 10.1523/jneurosci.4175-14.2015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 4.1] [Reference Citation Analysis]
34 Koussoulas K, Swaminathan M, Fung C, Bornstein JC, Foong JPP. Neurally Released GABA Acts via GABAC Receptors to Modulate Ca2+ Transients Evoked by Trains of Synaptic Inputs, but Not Responses Evoked by Single Stimuli, in Myenteric Neurons of Mouse Ileum. Front Physiol 2018;9:97. [PMID: 29487540 DOI: 10.3389/fphys.2018.00097] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
35 Kollmann P, Elfers K, Maurer S, Klingenspor M, Schemann M, Mazzuoli-Weber G. Submucosal enteric neurons of the cavine distal colon are sensitive to hypoosmolar stimuli. J Physiol 2020;598:5317-32. [PMID: 32880976 DOI: 10.1113/JP280309] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021;148:dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
37 Li Z, Hao MM, Van den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P. Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. Elife. 2019;8:e42914. [PMID: 30747710 DOI: 10.7554/elife.42914] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
38 Boesmans W, Lasrado R, Vanden Berghe P, Pachnis V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia. 2015;63:229-241. [PMID: 25161129 DOI: 10.1002/glia.22746] [Cited by in Crossref: 111] [Cited by in F6Publishing: 106] [Article Influence: 13.9] [Reference Citation Analysis]
39 Sharkey KA, Savidge TC. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci. 2014;181:94-106. [PMID: 24412639 DOI: 10.1016/j.autneu.2013.12.006] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.4] [Reference Citation Analysis]
40 De Schepper S, Verheijden S, Aguilera-lizarraga J, Viola MF, Boesmans W, Stakenborg N, Voytyuk I, Schmidt I, Boeckx B, Dierckx de Casterlé I, Baekelandt V, Gonzalez Dominguez E, Mack M, Depoortere I, De Strooper B, Sprangers B, Himmelreich U, Soenen S, Guilliams M, Vanden Berghe P, Jones E, Lambrechts D, Boeckxstaens G. Self-Maintaining Gut Macrophages Are Essential for Intestinal Homeostasis. Cell 2018;175:400-415.e13. [DOI: 10.1016/j.cell.2018.07.048] [Cited by in Crossref: 165] [Cited by in F6Publishing: 151] [Article Influence: 41.3] [Reference Citation Analysis]
41 Hao MM, Fung C, Boesmans W, Lowette K, Tack J, Vanden Berghe P. Development of the intrinsic innervation of the small bowel mucosa and villi. American Journal of Physiology-Gastrointestinal and Liver Physiology 2020;318:G53-65. [DOI: 10.1152/ajpgi.00264.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
42 Hennig GW, Gould TW, Koh SD, Corrigan RD, Heredia DJ, Shonnard MC, Smith TK. Use of Genetically Encoded Calcium Indicators (GECIs) Combined with Advanced Motion Tracking Techniques to Examine the Behavior of Neurons and Glia in the Enteric Nervous System of the Intact Murine Colon. Front Cell Neurosci 2015;9:436. [PMID: 26617487 DOI: 10.3389/fncel.2015.00436] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
43 Boesmans W, Hao MM, Vanden Berghe P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 2018;15:21-38. [PMID: 29184183 DOI: 10.1038/nrgastro.2017.151] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
44 Boesmans W, Hao MM, Vanden Berghe P. Optical Tools to Investigate Cellular Activity in the Intestinal Wall. J Neurogastroenterol Motil 2015;21:337-51. [PMID: 26130630 DOI: 10.5056/jnm15096] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
45 M Hao M. Development of Neural Activity in the Enteric Nervous System: Similarities and Differences to Other Parts of the Nervous System. Adv Exp Med Biol 2016;891:43-51. [PMID: 27379633 DOI: 10.1007/978-3-319-27592-5_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
46 Lasrado R, Boesmans W, Kleinjung J, Pin C, Bell D, Bhaw L, McCallum S, Zong H, Luo L, Clevers H, Vanden Berghe P, Pachnis V. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science 2017;356:722-6. [PMID: 28522527 DOI: 10.1126/science.aam7511] [Cited by in Crossref: 75] [Cited by in F6Publishing: 66] [Article Influence: 18.8] [Reference Citation Analysis]
47 Sharkey KA, Beck PL, McKay DM. Neuroimmunophysiology of the gut: advances and emerging concepts focusing on the epithelium. Nat Rev Gastroenterol Hepatol 2018;15:765-84. [PMID: 30069036 DOI: 10.1038/s41575-018-0051-4] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
48 Hung LY, Parathan P, Boonma P, Wu Q, Wang Y, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Antibiotic exposure postweaning disrupts the neurochemistry and function of enteric neurons mediating colonic motor activity.Am J Physiol Gastrointest Liver Physiol. 2020;318:G1042-G1053. [PMID: 32390463 DOI: 10.1152/ajpgi.00088.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
49 Gulbransen BD. Emerging tools to study enteric neuromuscular function. Am J Physiol Gastrointest Liver Physiol 2017;312:G420-6. [PMID: 28280142 DOI: 10.1152/ajpgi.00049.2017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
50 Vergnolle N, Cirillo C. Neurons and Glia in the Enteric Nervous System and Epithelial Barrier Function. Physiology (Bethesda) 2018;33:269-80. [PMID: 29897300 DOI: 10.1152/physiol.00009.2018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
51 Cooper JE, McCann CJ, Natarajan D, Choudhury S, Boesmans W, Delalande JM, Vanden Berghe P, Burns AJ, Thapar N. In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety. PLoS One 2016;11:e0147989. [PMID: 26824433 DOI: 10.1371/journal.pone.0147989] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 7.7] [Reference Citation Analysis]
52 Hao MM, Capoccia E, Cirillo C, Boesmans W, Vanden Berghe P. Arundic Acid Prevents Developmental Upregulation of S100B Expression and Inhibits Enteric Glial Development. Front Cell Neurosci 2017;11:42. [PMID: 28280459 DOI: 10.3389/fncel.2017.00042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
53 Sharkey KA, Savidge TC. Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci. 2014;182:70-82. [PMID: 24674836 DOI: 10.1016/j.autneu.2014.03.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
54 Kazwiny Y, Pedrosa J, Zhang Z, Boesmans W, D'hooge J, Vanden Berghe P. Extracting neuronal activity signals from microscopy recordings of contractile tissue using B-spline Explicit Active Surfaces (BEAS) cell tracking. Sci Rep 2021;11:10937. [PMID: 34035411 DOI: 10.1038/s41598-021-90448-4] [Reference Citation Analysis]
55 Martens MA, Boesmans W, Vanden Berghe P. Calcium imaging at kHz frame rates resolves millisecond timing in neuronal circuits and varicosities. Biomed Opt Express 2014;5:2648-61. [PMID: 25136492 DOI: 10.1364/BOE.5.002648] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]