BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gupta Y, Kim JI, Kim BC, Kwon GR. Classification and Graphical Analysis of Alzheimer's Disease and Its Prodromal Stage Using Multimodal Features From Structural, Diffusion, and Functional Neuroimaging Data and the APOE Genotype. Front Aging Neurosci 2020;12:238. [PMID: 32848713 DOI: 10.3389/fnagi.2020.00238] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Ma H, Huang G, Li M, Han Y, Sun J, Zhan L, Wang Q, Jia X, Han X, Li H, Song Y, Lv Y. The Predictive Value of Dynamic Intrinsic Local Metrics in Transient Ischemic Attack. Front Aging Neurosci 2022;13:808094. [DOI: 10.3389/fnagi.2021.808094] [Reference Citation Analysis]
2 Wang S, Rao J, Yue Y, Xue C, Hu G, Qi W, Ma W, Ge H, Zhang F, Zhang X, Chen J. Altered Frequency-Dependent Brain Activation and White Matter Integrity Associated With Cognition in Characterizing Preclinical Alzheimer's Disease Stages. Front Hum Neurosci 2021;15:625232. [PMID: 33664660 DOI: 10.3389/fnhum.2021.625232] [Reference Citation Analysis]
3 Iv WCS, Kapoor R, Ghosh P. Multimodal Classification: Current Landscape, Taxonomy and Future Directions. ACM Comput Surv . [DOI: 10.1145/3543848] [Reference Citation Analysis]
4 Meng X, Liu J, Fan X, Bian C, Wei Q, Wang Z, Liu W, Jiao Z. Multi-Modal Neuroimaging Neural Network-Based Feature Detection for Diagnosis of Alzheimer’s Disease. Front Aging Neurosci 2022;14:911220. [DOI: 10.3389/fnagi.2022.911220] [Reference Citation Analysis]
5 Tabarestani S, Eslami M, Cabrerizo M, Curiel RE, Barreto A, Rishe N, Vaillancourt D, Dekosky ST, Loewenstein DA, Duara R, Adjouadi M. A Tensorized Multitask Deep Learning Network for Progression Prediction of Alzheimer’s Disease. Front Aging Neurosci 2022;14:810873. [DOI: 10.3389/fnagi.2022.810873] [Reference Citation Analysis]
6 Perez-Gonzalez J, Jiménez-Ángeles L, Rojas Saavedra K, Barbará Morales E, Medina-Bañuelos V. Mild cognitive impairment classification using combined structural and diffusion imaging biomarkers. Phys Med Biol 2021;66. [PMID: 34167090 DOI: 10.1088/1361-6560/ac0e77] [Reference Citation Analysis]
7 Zhang T, Liao Q, Zhang D, Zhang C, Yan J, Ngetich R, Zhang J, Jin Z, Li L. Predicting MCI to AD Conversation Using Integrated sMRI and rs-fMRI: Machine Learning and Graph Theory Approach. Front Aging Neurosci 2021;13:688926. [PMID: 34421570 DOI: 10.3389/fnagi.2021.688926] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]