BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Harasym D, Turco CV, Nicolini C, Toepp SL, Jenkins EM, Gibala MJ, Noseworthy MD, Nelson AJ. Fitness Level Influences White Matter Microstructure in Postmenopausal Women. Front Aging Neurosci 2020;12:129. [PMID: 32547386 DOI: 10.3389/fnagi.2020.00129] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang YR, Lefebvre G, Picard M, Lamoureux-Andrichuk A, Ferland MC, Therrien-Blanchet JM, Boré A, Tremblay J, Descoteaux M, Champoux F, Théoret H. Physiological, Anatomical and Metabolic Correlates of Aerobic Fitness in Human Primary Motor Cortex: A Multimodal Study. Neuroscience 2023:S0306-4522(23)00123-9. [PMID: 36921757 DOI: 10.1016/j.neuroscience.2023.03.007] [Reference Citation Analysis]
2 Chen F, Soya H, Yassa MA, Li R, Chu C, Chen A, Hung C, Chang Y. Effects of exercise types on white matter microstructure in late midlife adults: Preliminary results from a diffusion tensor imaging study. Front Aging Neurosci 2022;14. [DOI: 10.3389/fnagi.2022.943992] [Reference Citation Analysis]
3 Krishnamurthy V, Paredes Spir I, Mammino KM, Nocera JR, McGregor KM, Crosson BA, Krishnamurthy LC. The Relationship Between Resting Cerebral Blood Flow, Neurometabolites, Cardio-Respiratory Fitness and Aging-Related Cognitive Decline. Front Psychiatry 2022;13:923076. [PMID: 35757218 DOI: 10.3389/fpsyt.2022.923076] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Toepp SL, Turco CV, Rehsi RS, Nelson AJ. The distribution and reliability of TMS-evoked short- and long-latency afferent interactions. PLoS One 2021;16:e0260663. [PMID: 34905543 DOI: 10.1371/journal.pone.0260663] [Reference Citation Analysis]
5 Won J, Callow DD, Pena GS, Gogniat MA, Kommula Y, Arnold-Nedimala NA, Jordan LS, Smith JC. Evidence for exercise-related plasticity in functional and structural neural network connectivity. Neurosci Biobehav Rev 2021;131:923-40. [PMID: 34655658 DOI: 10.1016/j.neubiorev.2021.10.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
6 Aghjayan SL, Lesnovskaya A, Esteban-Cornejo I, Peven JC, Stillman CM, Erickson KI. Aerobic exercise, cardiorespiratory fitness, and the human hippocampus. Hippocampus 2021;31:817-44. [PMID: 34101305 DOI: 10.1002/hipo.23337] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
7 Turco CV, Nelson AJ. Transcranial Magnetic Stimulation to Assess Exercise-Induced Neuroplasticity. Front Neuroergonomics 2021;2:679033. [DOI: 10.3389/fnrgo.2021.679033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
8 Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand? Neuroscience 2021;457:259-82. [PMID: 33359477 DOI: 10.1016/j.neuroscience.2020.12.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]