BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ashraf A, Clark M, So PW. The Aging of Iron Man. Front Aging Neurosci 2018;10:65. [PMID: 29593525 DOI: 10.3389/fnagi.2018.00065] [Cited by in Crossref: 70] [Cited by in F6Publishing: 68] [Article Influence: 17.5] [Reference Citation Analysis]
Number Citing Articles
1 Lorio S, Sedlacik J, So PW, Parkes HG, Gunny R, Löbel U, Li YF, Ogunbiyi O, Mistry T, Dixon E, Adler S, Cross JH, Baldeweg T, Jacques TS, Shmueli K, Carmichael DW. Quantitative MRI susceptibility mapping reveals cortical signatures of changes in iron, calcium and zinc in malformations of cortical development in children with drug-resistant epilepsy. Neuroimage 2021;238:118102. [PMID: 34058334 DOI: 10.1016/j.neuroimage.2021.118102] [Reference Citation Analysis]
2 Han J, Fan Y, Wu P, Huang Z, Li X, Zhao L, Ji Y, Zhu M. Parkinson's Disease Dementia: Synergistic Effects of Alpha-Synuclein, Tau, Beta-Amyloid, and Iron. Front Aging Neurosci 2021;13:743754. [PMID: 34707492 DOI: 10.3389/fnagi.2021.743754] [Reference Citation Analysis]
3 Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the Brain with Iron. Antioxidants (Basel) 2021;10:61. [PMID: 33419006 DOI: 10.3390/antiox10010061] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
4 Liu M, Liu B, Liu Q, Du K, Wang Z, He N. Nanomaterial-induced ferroptosis for cancer specific therapy. Coordination Chemistry Reviews 2019;382:160-80. [DOI: 10.1016/j.ccr.2018.12.015] [Cited by in Crossref: 55] [Cited by in F6Publishing: 33] [Article Influence: 18.3] [Reference Citation Analysis]
5 Schiavi A, Strappazzon F, Ventura N. Mitophagy and iron: two actors sharing the stage in age-associated neuronal pathologies. Mech Ageing Dev 2020;188:111252. [PMID: 32330468 DOI: 10.1016/j.mad.2020.111252] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ashraf A, Michaelides C, Walker TA, Ekonomou A, Suessmilch M, Sriskanthanathan A, Abraha S, Parkes A, Parkes HG, Geraki K, So PW. Regional Distributions of Iron, Copper and Zinc and Their Relationships With Glia in a Normal Aging Mouse Model. Front Aging Neurosci 2019;11:351. [PMID: 31920630 DOI: 10.3389/fnagi.2019.00351] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
7 Merelli A, Repetto M, Lazarowski A, Auzmendi J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J Alzheimers Dis 2021;82:S109-26. [PMID: 33325385 DOI: 10.3233/JAD-201074] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
8 Machado GDB, de Freitas BS, Florian LZ, Monteiro RT, Gus H, Schröder N. G protein-coupled oestrogen receptor stimulation ameliorates iron- and ovariectomy-induced memory impairments through the cAMP/PKA/CREB signalling pathway. J Neuroendocrinol 2019;31:e12780. [PMID: 31418949 DOI: 10.1111/jne.12780] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
9 Maher P. Modulation of the Neuroprotective and Anti-inflammatory Activities of the Flavonol Fisetin by the Transition Metals Iron and Copper. Antioxidants (Basel) 2020;9:E1113. [PMID: 33187316 DOI: 10.3390/antiox9111113] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Michalke B, Willkommen D, Venkataramani V. Iron Redox Speciation Analysis Using Capillary Electrophoresis Coupled to Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). Front Chem 2019;7:136. [PMID: 30931301 DOI: 10.3389/fchem.2019.00136] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
11 Bosman GJCGM. Disturbed Red Blood Cell Structure and Function: An Exploration of the Role of Red Blood Cells in Neurodegeneration. Front Med (Lausanne) 2018;5:198. [PMID: 30062097 DOI: 10.3389/fmed.2018.00198] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
12 Costanzo P, Oliverio M, Maiuolo J, Bonacci S, De Luca G, Masullo M, Arcone R, Procopio A. Novel Hydroxytyrosol-Donepezil Hybrids as Potential Antioxidant and Neuroprotective Agents. Front Chem 2021;9:741444. [PMID: 34738004 DOI: 10.3389/fchem.2021.741444] [Reference Citation Analysis]
13 Larrick JW, Larrick JW, Mendelsohn AR. Contribution of Ferroptosis to Aging and Frailty. Rejuvenation Res 2020;23:434-8. [PMID: 32977738 DOI: 10.1089/rej.2020.2390] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Jasiecki J, Targońska M, Wasąg B. The Role of Butyrylcholinesterase and Iron in the Regulation of Cholinergic Network and Cognitive Dysfunction in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2021;22:2033. [PMID: 33670778 DOI: 10.3390/ijms22042033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ijomone OM, Ifenatuoha CW, Aluko OM, Ijomone OK, Aschner M. The aging brain: impact of heavy metal neurotoxicity. Crit Rev Toxicol 2020;50:801-14. [PMID: 33210961 DOI: 10.1080/10408444.2020.1838441] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
16 Zeidan RS, Han SM, Leeuwenburgh C, Xiao R. Iron homeostasis and organismal aging. Ageing Res Rev 2021;72:101510. [PMID: 34767974 DOI: 10.1016/j.arr.2021.101510] [Reference Citation Analysis]
17 Ndayisaba A, Kaindlstorfer C, Wenning GK. Iron in Neurodegeneration - Cause or Consequence? Front Neurosci 2019;13:180. [PMID: 30881284 DOI: 10.3389/fnins.2019.00180] [Cited by in Crossref: 74] [Cited by in F6Publishing: 65] [Article Influence: 24.7] [Reference Citation Analysis]
18 Violi F, Solovyev N, Vinceti M, Mandrioli J, Lucio M, Michalke B. The study of levels from redox-active elements in cerebrospinal fluid of amyotrophic lateral sclerosis patients carrying disease-related gene mutations shows potential copper dyshomeostasis. Metallomics 2020;12:668-81. [PMID: 32373852 DOI: 10.1039/d0mt00051e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
19 Li Q, Hu C, Lin J, Yang Z, Zhou Q, Yang R, Yuan H, Zhu X, Lv Y, Liang Q, Lv Z, Sun L, Zhang Y. Urinary ionomic analysis reveals new relationship between minerals and longevity in a Han Chinese population. Journal of Trace Elements in Medicine and Biology 2019;53:69-75. [DOI: 10.1016/j.jtemb.2019.02.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kim Y, Connor JR. The roles of iron and HFE genotype in neurological diseases. Mol Aspects Med 2020;75:100867. [PMID: 32654761 DOI: 10.1016/j.mam.2020.100867] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 Singh YP, Pandey A, Vishwakarma S, Modi G. A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases. Mol Divers 2019;23:509-26. [DOI: 10.1007/s11030-018-9878-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
22 Qian ZM, Ke Y. Hepcidin and its therapeutic potential in neurodegenerative disorders. Med Res Rev 2020;40:633-53. [PMID: 31471929 DOI: 10.1002/med.21631] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
23 Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019;11:143. [PMID: 31297054 DOI: 10.3389/fnagi.2019.00143] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 8.7] [Reference Citation Analysis]
24 Sfera A, Gradini R, Cummings M, Diaz E, Price AI, Osorio C. Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease. Front Neurol 2018;9:1062. [PMID: 30564191 DOI: 10.3389/fneur.2018.01062] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
25 Bailey DK, Clark W, Kosman DJ. The iron chelator, PBT434, modulates transcellular iron trafficking in brain microvascular endothelial cells. PLoS One 2021;16:e0254794. [PMID: 34310628 DOI: 10.1371/journal.pone.0254794] [Reference Citation Analysis]
26 Winn NC, Wolf EM, Cottam MA, Bhanot M, Hasty AH. Myeloid-specific deletion of ferroportin impairs macrophage bioenergetics but is disconnected from systemic insulin action in adult mice. Am J Physiol Endocrinol Metab 2021;321:E376-91. [PMID: 34338042 DOI: 10.1152/ajpendo.00116.2021] [Reference Citation Analysis]
27 Das N, Raymick J, Sarkar S. Role of metals in Alzheimer's disease. Metab Brain Dis 2021. [PMID: 34313926 DOI: 10.1007/s11011-021-00765-w] [Reference Citation Analysis]
28 Bossoni L, Hegeman-Kleinn I, van Duinen SG, Bulk M, Vroegindeweij LHP, Langendonk JG, Hirschler L, Webb A, van der Weerd L. Off-resonance saturation as an MRI method to quantify mineral- iron in the post-mortem brain. Magn Reson Med 2021. [PMID: 34655092 DOI: 10.1002/mrm.29041] [Reference Citation Analysis]
29 Tang J, Zhuo Y, Li Y. Effects of Iron and Zinc on Mitochondria: Potential Mechanisms of Glaucomatous Injury. Front Cell Dev Biol 2021;9:720288. [PMID: 34447755 DOI: 10.3389/fcell.2021.720288] [Reference Citation Analysis]
30 Mesika R, Reichmann D. When safeguarding goes wrong: Impact of oxidative stress on protein homeostasis in health and neurodegenerative disorders. Adv Protein Chem Struct Biol 2019;114:221-64. [PMID: 30635082 DOI: 10.1016/bs.apcsb.2018.11.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
31 Aso T, Sugihara G, Murai T, Ubukata S, Urayama SI, Ueno T, Fujimoto G, Thuy DHD, Fukuyama H, Ueda K. A venous mechanism of ventriculomegaly shared between traumatic brain injury and normal ageing. Brain 2020;143:1843-56. [PMID: 32372102 DOI: 10.1093/brain/awaa125] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
32 Urati A, Dey M, Gautam AS, Singh RK. Iron-induced cellular in vitro neurotoxic responses in rat C6 cell line. Environ Toxicol 2022. [PMID: 35446454 DOI: 10.1002/tox.23543] [Reference Citation Analysis]
33 Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neurosci 2021;8:86-132. [PMID: 33490374 DOI: 10.3934/Neuroscience.2021005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
34 Belaya I, Kucháriková N, Górová V, Kysenius K, Hare DJ, Crouch PJ, Malm T, Atalay M, White AR, Liddell JR, Kanninen KM. Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021;22:8715. [PMID: 34445419 DOI: 10.3390/ijms22168715] [Reference Citation Analysis]
35 Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. The key roles of organelles and ferroptosis in Alzheimer's disease. J Neurosci Res 2022. [PMID: 35293012 DOI: 10.1002/jnr.25033] [Reference Citation Analysis]
36 Campos-Escamilla C. The role of transferrins and iron-related proteins in brain iron transport: applications to neurological diseases. Adv Protein Chem Struct Biol 2021;123:133-62. [PMID: 33485481 DOI: 10.1016/bs.apcsb.2020.09.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Peng W, Minakaki G, Nguyen M, Krainc D. Preserving Lysosomal Function in the Aging Brain: Insights from Neurodegeneration. Neurotherapeutics 2019;16:611-34. [PMID: 31183763 DOI: 10.1007/s13311-019-00742-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
38 Peng Y, Chang X, Lang M. Iron Homeostasis Disorder and Alzheimer's Disease. Int J Mol Sci 2021;22:12442. [PMID: 34830326 DOI: 10.3390/ijms222212442] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Hughes CE, Coody TK, Jeong MY, Berg JA, Winge DR, Hughes AL. Cysteine Toxicity Drives Age-Related Mitochondrial Decline by Altering Iron Homeostasis. Cell 2020;180:296-310.e18. [PMID: 31978346 DOI: 10.1016/j.cell.2019.12.035] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 21.0] [Reference Citation Analysis]
40 Joppe K, Roser AE, Maass F, Lingor P. The Contribution of Iron to Protein Aggregation Disorders in the Central Nervous System. Front Neurosci 2019;13:15. [PMID: 30723395 DOI: 10.3389/fnins.2019.00015] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 11.3] [Reference Citation Analysis]
41 Martins AC, Virgolini MB, Tinkov AA, Skalny AV, Tirumala RP, Farina M, Santamaria A, Lu R, Aschner M. Iron overload and neurodegenerative diseases: What can we learn from Caenorhabditis elegans ? Toxicology Research and Application 2022;6:239784732210918. [DOI: 10.1177/23978473221091852] [Reference Citation Analysis]
42 Ashraf A, So PW. Spotlight on Ferroptosis: Iron-Dependent Cell Death in Alzheimer's Disease. Front Aging Neurosci 2020;12:196. [PMID: 32760266 DOI: 10.3389/fnagi.2020.00196] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
43 Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN. Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chem Biol 2021;16:945-72. [PMID: 34102834 DOI: 10.1021/acschembio.1c00122] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Ficiarà E, Munir Z, Boschi S, Caligiuri ME, Guiot C. Alteration of Iron Concentration in Alzheimer's Disease as a Possible Diagnostic Biomarker Unveiling Ferroptosis. Int J Mol Sci 2021;22:4479. [PMID: 33923052 DOI: 10.3390/ijms22094479] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
45 Guerreri M, Palombo M, Caporale A, Fasano F, Macaluso E, Bozzali M, Capuani S. Age-related microstructural and physiological changes in normal brain measured by MRI γ-metrics derived from anomalous diffusion signal representation. Neuroimage 2019;188:654-67. [PMID: 30583064 DOI: 10.1016/j.neuroimage.2018.12.044] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
46 Ashraf A, Stosnach H, Parkes HG, Hye A, Powell J, So PW; AddNeuroMed consortium. Pattern of Altered Plasma Elemental Phosphorus, Calcium, Zinc, and Iron in Alzheimer's Disease. Sci Rep 2019;9:3147. [PMID: 30816126 DOI: 10.1038/s41598-018-37431-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
47 Freinbichler W, Misini B, Colivicchi MA, Linert W, Tipton KF, Della Corte L. The application of bathophenanthroline for the determination of free iron in parallel with hROS in microdialysis samples. Journal of Neuroscience Methods 2020;331:108530. [DOI: 10.1016/j.jneumeth.2019.108530] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Ahlswede M, Nösel P, Maudsley AA, Sheriff S, Mahmoudi N, Bronzlik P, Lanfermann H, Ding XQ. Alterations of Striato-Thalamic Metabolism in Normal Aging Human Brain-An MR Metabolic Imaging Study. Metabolites 2021;11:371. [PMID: 34207758 DOI: 10.3390/metabo11060371] [Reference Citation Analysis]
49 Bi M, Du X, Jiao Q, Liu Z, Jiang H. α-Synuclein Regulates Iron Homeostasis via Preventing Parkin-Mediated DMT1 Ubiquitylation in Parkinson's Disease Models. ACS Chem Neurosci 2020;11:1682-91. [PMID: 32379419 DOI: 10.1021/acschemneuro.0c00196] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
50 DeGregorio-Rocasolano N, Martí-Sistac O, Gasull T. Deciphering the Iron Side of Stroke: Neurodegeneration at the Crossroads Between Iron Dyshomeostasis, Excitotoxicity, and Ferroptosis. Front Neurosci 2019;13:85. [PMID: 30837827 DOI: 10.3389/fnins.2019.00085] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 10.7] [Reference Citation Analysis]
51 Choi DH, Kwon KC, Hwang DJ, Koo JH, Um HS, Song HS, Kim JS, Jang Y, Cho JY. Treadmill Exercise Alleviates Brain Iron Dyshomeostasis Accelerating Neuronal Amyloid-β Production, Neuronal Cell Death, and Cognitive Impairment in Transgenic Mice Model of Alzheimer's Disease. Mol Neurobiol 2021;58:3208-23. [PMID: 33641078 DOI: 10.1007/s12035-021-02335-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
52 Qian ZM, Ke Y. Brain iron transport. Biol Rev Camb Philos Soc 2019;94:1672-84. [PMID: 31190441 DOI: 10.1111/brv.12521] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
53 Yang G, Qian C, Zhang C, Bao Y, Liu MY, Jiang F, Li W, Liu Y, Ke Y, Qian ZM. Hepcidin attenuates the iron-mediated secondary neuronal injury after intracerebral hemorrhage in rats. Transl Res 2021;229:53-68. [PMID: 32932001 DOI: 10.1016/j.trsl.2020.09.002] [Reference Citation Analysis]
54 Li B, Xia M, Zorec R, Parpura V, Verkhratsky A. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res 2021;1752:147234. [PMID: 33412145 DOI: 10.1016/j.brainres.2020.147234] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
55 Sestito S, Wang S, Chen Q, Lu J, Bertini S, Pomelli C, Chiellini G, He X, Pi R, Rapposelli S. Multi-targeted ChEI-copper chelating molecules as neuroprotective agents. Eur J Med Chem 2019;174:216-25. [PMID: 31042617 DOI: 10.1016/j.ejmech.2019.04.060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
56 Daugherty AM. Hypertension-related risk for dementia: A summary review with future directions. Semin Cell Dev Biol 2021;116:82-9. [PMID: 33722505 DOI: 10.1016/j.semcdb.2021.03.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Mehta KJ. Role of iron and iron-related proteins in mesenchymal stem cells: Cellular and clinical aspects. J Cell Physiol 2021;236:7266-89. [PMID: 33821487 DOI: 10.1002/jcp.30383] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Ashraf A, Ashton NJ, Chatterjee P, Goozee K, Shen K, Fripp J, Ames D, Rowe C, Masters CL, Villemagne V, Hye A, Martins RN, So PW; AIBL. Plasma transferrin and hemopexin are associated with altered Aβ uptake and cognitive decline in Alzheimer's disease pathology. Alzheimers Res Ther 2020;12:72. [PMID: 32517787 DOI: 10.1186/s13195-020-00634-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
59 Ashraf A, Jeandriens J, Parkes HG, So PW. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: Evidence of ferroptosis. Redox Biol 2020;32:101494. [PMID: 32199332 DOI: 10.1016/j.redox.2020.101494] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
60 Shen X, Liu J, Fujita Y, Liu S, Maeda T, Kikuchi K, Obara T, Takebe A, Sayama R, Takahashi T, Matsue A, Sera K, Michikawa M, Komano H, Zou K. Iron treatment inhibits Aβ42 deposition in vivo and reduces Aβ42/Aβ40 ratio. Biochem Biophys Res Commun 2019;512:653-8. [PMID: 30791980 DOI: 10.1016/j.bbrc.2019.01.119] [Reference Citation Analysis]
61 Ashraf A, Alepuz Guillen JA, Aljuhani M, Hubens C, So PW. Low Cerebrospinal Fluid Levels of Melanotransferrin Are Associated With Conversion of Mild Cognitively Impaired Subjects to Alzheimer's Disease. Front Neurosci 2019;13:181. [PMID: 30906244 DOI: 10.3389/fnins.2019.00181] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
62 De Barros A, Arribarat G, Combis J, Chaynes P, Péran P. Matching ex vivo MRI With Iron Histology: Pearls and Pitfalls. Front Neuroanat 2019;13:68. [PMID: 31333421 DOI: 10.3389/fnana.2019.00068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
63 Grubić Kezele T, Ćurko-Cofek B. Age-Related Changes and Sex-Related Differences in Brain Iron Metabolism. Nutrients 2020;12:E2601. [PMID: 32867052 DOI: 10.3390/nu12092601] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
64 Debnath S, Chakrabarti A. Effects of free soluble iron on thermal aggregation of hemoglobin. Biophys Chem 2021;269:106527. [PMID: 33352336 DOI: 10.1016/j.bpc.2020.106527] [Reference Citation Analysis]
65 Greenwood EK, Brown DR. Senescent Microglia: The Key to the Ageing Brain? Int J Mol Sci 2021;22:4402. [PMID: 33922383 DOI: 10.3390/ijms22094402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Shi F, He Y, Chen Y, Yin X, Sha X, Wang Y. Comparative Analysis of Multiple Neurodegenerative Diseases Based on Advanced Epigenetic Aging Brain. Front Genet 2021;12:657636. [PMID: 34093653 DOI: 10.3389/fgene.2021.657636] [Reference Citation Analysis]
67 Gozt A, Hellewell S, Ward PGD, Bynevelt M, Fitzgerald M. Emerging Applications for Quantitative Susceptibility Mapping in the Detection of Traumatic Brain Injury Pathology. Neuroscience 2021;467:218-36. [PMID: 34087394 DOI: 10.1016/j.neuroscience.2021.05.030] [Reference Citation Analysis]
68 Cui D, Arima M, Hirayama T, Ikeda E. Hypoxia-induced disruption of neural vascular barrier is mediated by the intracellular induction of Fe(II) ion. Exp Cell Res 2019;379:166-71. [PMID: 30970238 DOI: 10.1016/j.yexcr.2019.04.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
69 Fafián-Labora JA, O'Loghlen A. Classical and Nonclassical Intercellular Communication in Senescence and Ageing. Trends Cell Biol 2020;30:628-39. [PMID: 32505550 DOI: 10.1016/j.tcb.2020.05.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
70 Gonzalez-latapi P, Malkani R. Update on Restless Legs Syndrome: from Mechanisms to Treatment. Curr Neurol Neurosci Rep 2019;19. [DOI: 10.1007/s11910-019-0965-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
71 Ashraf AA, Dani M, So PW. Low Cerebrospinal Fluid Levels of Hemopexin Are Associated With Increased Alzheimer's Pathology, Hippocampal Hypometabolism, and Cognitive Decline. Front Mol Biosci 2020;7:590979. [PMID: 33392254 DOI: 10.3389/fmolb.2020.590979] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
72 Simão M, Cancela ML. Musculoskeletal complications associated with pathological iron toxicity and its molecular mechanisms. Biochem Soc Trans 2021;49:747-59. [PMID: 33929529 DOI: 10.1042/BST20200672] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
73 Wati SM, Matsumaru D, Motohashi H. NRF2 pathway activation by KEAP1 inhibition attenuates the manifestation of aging phenotypes in salivary glands. Redox Biol 2020;36:101603. [PMID: 32590331 DOI: 10.1016/j.redox.2020.101603] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
74 Chiabrando D, Fiorito V, Petrillo S, Tolosano E. Unraveling the Role of Heme in Neurodegeneration. Front Neurosci 2018;12:712. [PMID: 30356807 DOI: 10.3389/fnins.2018.00712] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
75 Gleitze S, Paula-Lima A, Núñez MT, Hidalgo C. The calcium-iron connection in ferroptosis-mediated neuronal death. Free Radic Biol Med 2021;175:28-41. [PMID: 34461261 DOI: 10.1016/j.freeradbiomed.2021.08.231] [Reference Citation Analysis]