BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mozaheb N, Mingeot-Leclercq MP. Membrane Vesicle Production as a Bacterial Defense Against Stress. Front Microbiol 2020;11:600221. [PMID: 33362747 DOI: 10.3389/fmicb.2020.600221] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Hosseini Zadeh ZS, Nemati F, Sharif E, Mohit E. The effects of different thermal and chemical stresses on release of outer membrane vesicles (OMVs) by ClearColi™. Arch Microbiol 2022;204:714. [DOI: 10.1007/s00203-022-03287-w] [Reference Citation Analysis]
2 Moshynets OV, Pokholenko I, Iungin O, Potters G, Spiers AJ. eDNA, Amyloid Fibers and Membrane Vesicles Identified in Pseudomonas fluorescens SBW25 Biofilms. IJMS 2022;23:15096. [DOI: 10.3390/ijms232315096] [Reference Citation Analysis]
3 Kong L, Yang C, Zhang Z. Organism‐Generated Biological Vesicles In Situ: An Emerging Drug Delivery Strategy. Advanced Science 2022. [DOI: 10.1002/advs.202204178] [Reference Citation Analysis]
4 Macnair CR, Tan M. The role of bacterial membrane vesicles in antibiotic resistance. Annals NY Academy of Science 2022. [DOI: 10.1111/nyas.14932] [Reference Citation Analysis]
5 Hosseini-giv N, Basas A, Hicks C, El-omar E, El-assaad F, Hosseini-beheshti E. Bacterial extracellular vesicles and their novel therapeutic applications in health and cancer. Front Cell Infect Microbiol 2022;12. [DOI: 10.3389/fcimb.2022.962216] [Reference Citation Analysis]
6 Olchowik-grabarek E, Sękowski S, Kwiatek A, Płaczkiewicz J, Abdulladjanova N, Shlyonsky V, Swiecicka I, Zamaraeva M. The Structural Changes in the Membranes of Staphylococcus aureus Caused by Hydrolysable Tannins Witness Their Antibacterial Activity. Membranes 2022;12:1124. [DOI: 10.3390/membranes12111124] [Reference Citation Analysis]
7 Bhar S, Zhao G, Bartel JD, Sterchele H, Del Mazo A, Emerson LE, Edelmann MJ, Jones MK. Bacterial extracellular vesicles control murine norovirus infection through modulation of antiviral immune responses. Front Immunol 2022;13:909949. [DOI: 10.3389/fimmu.2022.909949] [Reference Citation Analysis]
8 Al-zawity J, Afzal F, Awan A, Nordhoff D, Kleimann A, Wesner D, Montier T, Le Gall T, Müller M. Effects of the Sex Steroid Hormone Estradiol on Biofilm Growth of Cystic Fibrosis Pseudomonas aeruginosa Isolates. Front Cell Infect Microbiol 2022;12:941014. [DOI: 10.3389/fcimb.2022.941014] [Reference Citation Analysis]
9 Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, Huang W, Ma Y. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev 2022;186:114321. [PMID: 35533789 DOI: 10.1016/j.addr.2022.114321] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Mat Rani NNI, Alzubaidi ZM, Butt AM, Mohammad Faizal NDF, Sekar M, Azhari H, Mohd Amin MCI. Outer membrane vesicles as biomimetic vaccine carriers against infections and cancers. WIREs Nanomed Nanobiotechnol 2022;14. [DOI: 10.1002/wnan.1784] [Reference Citation Analysis]
11 Banerjee G, Quan F, Mondal AK, Sur S, Banerjee P, Chattopadhyay P. Interrelation between Stress Management and Secretion Systems of Ralstonia solanacearum: An In Silico Assessment. Pathogens 2022;11:730. [DOI: 10.3390/pathogens11070730] [Reference Citation Analysis]
12 Mozaheb N, Van Der Smissen P, Opsomer T, Mignolet E, Terrasi R, Paquot A, Larondelle Y, Dehaen W, Muccioli GG, Mingeot-leclercq M, Ellermeier CD. Contribution of Membrane Vesicle to Reprogramming of Bacterial Membrane Fluidity in Pseudomonas aeruginosa. mSphere. [DOI: 10.1128/msphere.00187-22] [Reference Citation Analysis]
13 Calcuttawala F, Shaw R, Sarbajna A, Dutta M, Sinha S, K. Das Gupta S. Apoptosis like symptoms associated with abortive infection of Mycobacterium smegmatis by mycobacteriophage D29. PLoS ONE 2022;17:e0259480. [DOI: 10.1371/journal.pone.0259480] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Villageliu DN, Samuelson DR. The Role of Bacterial Membrane Vesicles in Human Health and Disease. Front Microbiol 2022;13:828704. [PMID: 35300484 DOI: 10.3389/fmicb.2022.828704] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Richter R, Kamal MAM, Koch M, Niebuur BJ, Huber AL, Goes A, Volz C, Vergalli J, Kraus T, Müller R, Schneider-Daum N, Fuhrmann G, Pagès JM, Lehr CM. An Outer Membrane Vesicle-Based Permeation Assay (OMPA) for Assessing Bacterial Bioavailability. Adv Healthc Mater 2022;11:e2101180. [PMID: 34614289 DOI: 10.1002/adhm.202101180] [Reference Citation Analysis]
16 Huang W, Meng L, Chen Y, Dong Z, Peng Q. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomater 2022;140:102-15. [PMID: 34896632 DOI: 10.1016/j.actbio.2021.12.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
17 Tarashi S, Zamani MS, Omrani MD, Fateh A, Moshiri A, Saedisomeolia A, Siadat SD, Kubow S, Torrecilhas AC. Commensal and Pathogenic Bacterial-Derived Extracellular Vesicles in Host-Bacterial and Interbacterial Dialogues: Two Sides of the Same Coin. Journal of Immunology Research 2022;2022:1-15. [DOI: 10.1155/2022/8092170] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Lou Y, Zhang J, Wang G, Fang W, Wang S, Abubakar YS, Zhou J, Wang Z, Zheng W. Genome-Wide Characterization of PX Domain-Containing Proteins Involved in Membrane Trafficking-Dependent Growth and Pathogenicity of Fusarium graminearum. mBio 2021;12:e0232421. [PMID: 34933449 DOI: 10.1128/mBio.02324-21] [Reference Citation Analysis]
19 Spiegel M, Krzyżek P, Dworniczek E, Adamski R, Sroka Z. In Silico Screening and In Vitro Assessment of Natural Products with Anti-Virulence Activity against Helicobacter pylori. Molecules 2021;27:20. [PMID: 35011255 DOI: 10.3390/molecules27010020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 König T, Nolte H, Aaltonen MJ, Tatsuta T, Krols M, Stroh T, Langer T, McBride HM. MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nat Cell Biol 2021;23:1271-86. [PMID: 34873283 DOI: 10.1038/s41556-021-00798-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 22.0] [Reference Citation Analysis]
21 Çelik P, Derkuş B, Erdoğan K, Barut D, Manga EB, Yıldırım Y, Pecha S, Çabuk A. Bacterial membrane vesicle functions, laboratory methods, and applications. Biotechnol Adv 2021;:107869. [PMID: 34793882 DOI: 10.1016/j.biotechadv.2021.107869] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
22 Baeza N, Delgado L, Comas J, Mercade E. Phage-Mediated Explosive Cell Lysis Induces the Formation of a Different Type of O-IMV in Shewanella vesiculosa M7T. Front Microbiol 2021;12:713669. [PMID: 34690958 DOI: 10.3389/fmicb.2021.713669] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
23 Bitzenhofer NL, Kruse L, Thies S, Wynands B, Lechtenberg T, Rönitz J, Kozaeva E, Wirth NT, Eberlein C, Jaeger KE, Nikel PI, Heipieper HJ, Wierckx N, Loeschcke A. Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem 2021;65:319-36. [PMID: 34223620 DOI: 10.1042/EBC20200173] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
24 Orellana R, Arancibia A, Badilla L, Acosta J, Arancibia G, Escar R, Ferrada G, Seeger M. Ecophysiological Features Shape the Distribution of Prophages and CRISPR in Sulfate Reducing Prokaryotes. Microorganisms 2021;9:931. [PMID: 33925267 DOI: 10.3390/microorganisms9050931] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Kim M, Park J, Kang M, Yang J, Park W. Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective. J Microbiol 2021;59:535-45. [PMID: 33877574 DOI: 10.1007/s12275-021-1085-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
26 Borrero de Acuña JM, Bernal P. Plant holobiont interactions mediated by the type VI secretion system and the membrane vesicles: promising tools for a greener agriculture. Environ Microbiol 2021;23:1830-6. [PMID: 33687778 DOI: 10.1111/1462-2920.15457] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]