BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol 2020;11:582779. [PMID: 33178164 DOI: 10.3389/fmicb.2020.582779] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 17.5] [Reference Citation Analysis]
Number Citing Articles
1 Liu R, Liu Z, Peng H, Lv Y, Feng Y, Kang J, Lu N, Ma R, Hou S, Sun W, Ying Q, Wang F, Gao Q, Zhao P, Zhu C, Wang Y, Wu X. Bomidin: An Optimized Antimicrobial Peptide With Broad Antiviral Activity Against Enveloped Viruses. Front Immunol 2022;13:851642. [PMID: 35663971 DOI: 10.3389/fimmu.2022.851642] [Reference Citation Analysis]
2 Jiang F, Liu J, Niu X, Zhang D, Wang E, Zhang T. Egg White Peptides Increased the Membrane Liquid-Ordered Phase of Giant Unilamellar Vesicles: Visualization, Localization, and Phase Regulation Mechanism. J Agric Food Chem 2022. [PMID: 35129984 DOI: 10.1021/acs.jafc.1c07846] [Reference Citation Analysis]
3 Dong M, Kwok SH, Humble JL, Liang Y, Tang SW, Tang KH, Tse MK, Lei JH, Ramalingam R, Koohi-Moghadam M, Au DWT, Sun H, Lam YW. BING, a novel antimicrobial peptide isolated from Japanese medaka plasma, targets bacterial envelope stress response by suppressing cpxR expression. Sci Rep 2021;11:12219. [PMID: 34108601 DOI: 10.1038/s41598-021-91765-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Venkata Subbiah H, Ramesh Babu P, Subbiah U. Determination of deleterious single-nucleotide polymorphisms of human LYZ C gene: an in silico study. J Genet Eng Biotechnol 2022;20:92. [PMID: 35776277 DOI: 10.1186/s43141-022-00383-8] [Reference Citation Analysis]
5 El Hidan MA, Laaradia MA, El Hiba O, Draoui A, Aimrane A, Kahime K. Scorpion-Derived Antiviral Peptides with a Special Focus on Medically Important Viruses: An Update. Biomed Res Int 2021;2021:9998420. [PMID: 34527748 DOI: 10.1155/2021/9998420] [Reference Citation Analysis]
6 Lin B, Hung A, Li R, Barlow A, Singleton W, Matthyssen T, Sani M, Hossain MA, Wade JD, O'brien-simpson NM, Li W. Systematic comparison of activity and mechanism of antimicrobial peptides against nosocomial pathogens. European Journal of Medicinal Chemistry 2022;231:114135. [DOI: 10.1016/j.ejmech.2022.114135] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
7 Dean SN, Alvarez JAE, Zabetakis D, Walper SA, Malanoski AP. PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction. Front Microbiol 2021;12:725727. [PMID: 34659152 DOI: 10.3389/fmicb.2021.725727] [Reference Citation Analysis]
8 Lima AM, Azevedo MIG, Sousa LM, Oliveira NS, Andrade CR, Freitas CDT, Souza PFN. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications. Int J Biol Macromol 2022;214:10-21. [PMID: 35700843 DOI: 10.1016/j.ijbiomac.2022.06.043] [Reference Citation Analysis]
9 Ting DSJ, Mohammed I, Lakshminarayanan R, Beuerman RW, Dua HS. Host Defense Peptides at the Ocular Surface: Roles in Health and Major Diseases, and Therapeutic Potentials. Front Med 2022;9:835843. [DOI: 10.3389/fmed.2022.835843] [Reference Citation Analysis]
10 Lee KW, Kim JG, Veerappan K, Chung H, Natarajan S, Kim KY, Park J. Utilizing Red Spotted Apollo Butterfly Transcriptome to Identify Antimicrobial Peptide Candidates against Porphyromonas gingivalis. Insects 2021;12:466. [PMID: 34069966 DOI: 10.3390/insects12050466] [Reference Citation Analysis]
11 Bhandari V, Suresh A. Next-Generation Approaches Needed to Tackle Antimicrobial Resistance for the Development of Novel Therapies Against the Deadly Pathogens. Front Pharmacol 2022;13:838092. [PMID: 35721221 DOI: 10.3389/fphar.2022.838092] [Reference Citation Analysis]
12 Fu R, Tang W, Zhang H, Zhang Y, Wang D, Chen W. Study on the mechanism of inhibiting patulin production by fengycin. Open Life Sciences 2022;17:372-9. [DOI: 10.1515/biol-2022-0041] [Reference Citation Analysis]
13 Sultana A, Luo H, Ramakrishna S. Antimicrobial Peptides and Their Applications in Biomedical Sector. Antibiotics (Basel) 2021;10:1094. [PMID: 34572676 DOI: 10.3390/antibiotics10091094] [Reference Citation Analysis]
14 Iannuzo N, Haller YA, Mcbride M, Mehari S, Lainson JC, Diehnelt CW, Haydel SE. High-Throughput Screening Identifies Synthetic Peptides with Antibacterial Activity against Mycobacterium abscessus and Serum Stability. ACS Omega. [DOI: 10.1021/acsomega.2c02844] [Reference Citation Analysis]
15 Jhong JH, Yao L, Pang Y, Li Z, Chung CR, Wang R, Li S, Li W, Luo M, Ma R, Huang Y, Zhu X, Zhang J, Feng H, Cheng Q, Wang C, Xi K, Wu LC, Chang TH, Horng JT, Zhu L, Chiang YC, Wang Z, Lee TY. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic Acids Res 2021:gkab1080. [PMID: 34850155 DOI: 10.1093/nar/gkab1080] [Reference Citation Analysis]
16 Batista Araujo J, Sastre de Souza G, Lorenzon EN. Indolicidin revisited: biological activity, potential applications and perspectives of an antimicrobial peptide not yet fully explored. World J Microbiol Biotechnol 2022;38:39. [PMID: 35018535 DOI: 10.1007/s11274-022-03227-2] [Reference Citation Analysis]
17 Panjla A, Kaul G, Chopra S, Titz A, Verma S. Short Peptides and Their Mimetics as Potent Antibacterial Agents and Antibiotic Adjuvants. ACS Chem Biol 2021;16:2731-45. [PMID: 34779605 DOI: 10.1021/acschembio.1c00626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Wrońska N, Szlaur M, Zawadzka K, Lisowska K. The Synergistic Effect of Triterpenoids and Flavonoids-New Approaches for Treating Bacterial Infections? Molecules 2022;27:847. [PMID: 35164112 DOI: 10.3390/molecules27030847] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Oliveras À, Camó C, Caravaca-Fuentes P, Moll L, Riesco-Llach G, Gil-Caballero S, Badosa E, Bonaterra A, Montesinos E, Feliu L, Planas M. Peptide Conjugates Derived from flg15, Pep13, and PIP1 That Are Active against Plant-Pathogenic Bacteria and Trigger Plant Defense Responses. Appl Environ Microbiol 2022;:e0057422. [PMID: 35638842 DOI: 10.1128/aem.00574-22] [Reference Citation Analysis]
20 Hua Z, Liu T, Han P, Zhou J, Zhao Y, Huang L, Yuan Y. Isolation, genomic characterization, and mushroom growth-promoting effect of the first fungus-derived Rhizobium. Front Microbiol 2022;13:947687. [DOI: 10.3389/fmicb.2022.947687] [Reference Citation Analysis]
21 dos Santos C, Franco OL. Advances in the use of plants as potential biofactories in the production of antimicrobial peptides. Peptide Science. [DOI: 10.1002/pep2.24290] [Reference Citation Analysis]
22 Stuart BAR, Franitza AL, E L. Regulatory Roles of Antimicrobial Peptides in the Nervous System: Implications for Neuronal Aging. Front Cell Neurosci 2022;16:843790. [DOI: 10.3389/fncel.2022.843790] [Reference Citation Analysis]
23 Guo HN, Tong YC, Wang HL, Zhang J, Li ZX, Abbas Z, Yang TT, Liu MY, Chen PY, Hua ZC, Yan XN, Cheng Q, Ahmat M, Wang JY, Zhang LL, Wei XB, Liao XD, Zhang RJ. Novel Hybrid Peptide Cathelicidin 2 (1-13)-Thymopentin (TP5) and Its Derived Peptides with Effective Antibacterial, Antibiofilm, and Anti-Adhesion Activities. Int J Mol Sci 2021;22:11681. [PMID: 34769113 DOI: 10.3390/ijms222111681] [Reference Citation Analysis]
24 Tivari SR, Kokate SV, Sobhia EM, Kumar SG, Shelar UB, Jadeja YS. A Series of Novel Bioactive Cyclic Peptides: Synthesis by Head‐to‐Tail Cyclization Approach, Antimicrobial Activity and Molecular Docking Studies. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202201481] [Reference Citation Analysis]
25 López-García G, Dublan-García O, Arizmendi-Cotero D, Gómez Oliván LM. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules 2022;27:1343. [PMID: 35209132 DOI: 10.3390/molecules27041343] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
26 Okella H, Georrge JJ, Ochwo S, Ndekezi C, Koffi KT, Aber J, Ajayi CO, Fofana FG, Ikiriza H, Mtewa AG, Nkamwesiga J, Bassogog CBB, Kato CD, Ogwang PE. New Putative Antimicrobial Candidates: In silico Design of Fish-Derived Antibacterial Peptide-Motifs. Front Bioeng Biotechnol 2020;8:604041. [PMID: 33344436 DOI: 10.3389/fbioe.2020.604041] [Reference Citation Analysis]
27 Wani NA, Stolovicki E, Hur DB, Shai Y. Site-Specific Isopeptide Bond Formation: A Powerful Tool for the Generation of Potent and Nontoxic Antimicrobial Peptides. J Med Chem 2022. [PMID: 35290038 DOI: 10.1021/acs.jmedchem.2c00061] [Reference Citation Analysis]
28 Bakovic A, Risner K, Bhalla N, Alem F, Chang TL, Weston WK, Harness JA, Narayanan A. Brilacidin Demonstrates Inhibition of SARS-CoV-2 in Cell Culture. Viruses 2021;13:271. [PMID: 33572467 DOI: 10.3390/v13020271] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
29 Ramazi S, Mohammadi N, Allahverdi A, Khalili E, Abdolmaleki P. A review on antimicrobial peptides databases and the computational tools. Database (Oxford) 2022;2022:baac011. [PMID: 35305010 DOI: 10.1093/database/baac011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Pinilla CMB, Lopes NA, Brandelli A. Lipid-Based Nanostructures for the Delivery of Natural Antimicrobials. Molecules 2021;26:3587. [PMID: 34208209 DOI: 10.3390/molecules26123587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Rima M, Rima M, Fajloun Z, Sabatier JM, Bechinger B, Naas T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics (Basel) 2021;10:1095. [PMID: 34572678 DOI: 10.3390/antibiotics10091095] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Suárez F, Calvelo M, Tolufashe GF, Muñoz A, Veleiro U, Porto C, Bastos M, Piñeiro Á, Garcia-fandino R. SuPepMem: a database of innate immune system peptides and their cell membrane interactions. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.01.025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Blanco-gonzález A, Piñeiro Á, García-fandiño R. Unravelling hierarchical levels of structure in lipid membranes. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.05.042] [Reference Citation Analysis]
34 Bellotti D, Remelli M. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Molecules 2022;27:4584. [DOI: 10.3390/molecules27144584] [Reference Citation Analysis]
35 Caraway HE, Lau JZ, Maron B, Oh MW, Belo Y, Brill A, Malach E, Ismail N, Hayouka Z, Lau GW. Antimicrobial Random Peptide Mixtures Eradicate Acinetobacter baumannii Biofilms and Inhibit Mouse Models of Infection. Antibiotics 2022;11:413. [DOI: 10.3390/antibiotics11030413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Silva-Carvalho AÉ, Cardoso MH, Alencar-Silva T, Bogéa GMR, Carvalho JL, Franco OL, Saldanha-Araujo F. Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 2021;:108021. [PMID: 34637839 DOI: 10.1016/j.pharmthera.2021.108021] [Reference Citation Analysis]
37 Awang T, Pongprayoon P. The penetration of human defensin 5 (HD5) through bacterial outer membrane: simulation studies. J Mol Model 2021;27:291. [PMID: 34546425 DOI: 10.1007/s00894-021-04915-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Svenson J, Molchanova N, Schroeder CI. Antimicrobial Peptide Mimics for Clinical Use: Does Size Matter? Front Immunol 2022;13:915368. [PMID: 35720375 DOI: 10.3389/fimmu.2022.915368] [Reference Citation Analysis]
39 Paulus C, Zapp J, Luzhetskyy A. New Scabimycins A-C Isolated from Streptomyces acidiscabies (Lu19992). Molecules 2021;26:5922. [PMID: 34641466 DOI: 10.3390/molecules26195922] [Reference Citation Analysis]
40 Nabavi-rad A, Azizi M, Jamshidizadeh S, Sadeghi A, Aghdaei HA, Yadegar A, Zali MR, Niedźwiedzka-rystwej P. The Effects of Vitamins and Micronutrients on Helicobacter pylori Pathogenicity, Survival, and Eradication: A Crosstalk between Micronutrients and Immune System. Journal of Immunology Research 2022;2022:1-22. [DOI: 10.1155/2022/4713684] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Brookwell A, Oza JP, Caschera F. Biotechnology Applications of Cell-Free Expression Systems. Life (Basel) 2021;11:1367. [PMID: 34947898 DOI: 10.3390/life11121367] [Reference Citation Analysis]
42 Conzelmann C, Muratspahić E, Tomašević N, Münch J, Gruber CW. In vitro Inhibition of HIV-1 by Cyclotide-Enriched Extracts of Viola tricolor. Front Pharmacol 2022;13:888961. [DOI: 10.3389/fphar.2022.888961] [Reference Citation Analysis]
43 Yadav V, Misra R. A review emphasizing on utility of heptad repeat sequence as a tool to design pharmacologically safe peptide-based antibiotics. Biochimie 2021;191:126-39. [PMID: 34492334 DOI: 10.1016/j.biochi.2021.09.001] [Reference Citation Analysis]
44 Feurstein C, Meyer V, Jung S. Structure–Activity Predictions From Computational Mining of Protein Databases to Assist Modular Design of Antimicrobial Peptides. Front Microbiol 2022;13:812903. [DOI: 10.3389/fmicb.2022.812903] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Rush TA, Shrestha HK, Gopalakrishnan Meena M, Spangler MK, Ellis JC, Labbé JL, Abraham PE. Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications. Front Fungal Biol 2021;2:716511. [DOI: 10.3389/ffunb.2021.716511] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
46 Shi S, Shen T, Liu Y, Chen L, Wang C, Liao C. Porcine Myeloid Antimicrobial Peptides: A Review of the Activity and Latest Advances. Front Vet Sci 2021;8:664139. [PMID: 34055951 DOI: 10.3389/fvets.2021.664139] [Reference Citation Analysis]
47 Debnath S, Ghosh S, Pandit G, Satpati P, Chatterjee S. Effect of Differential Geminal Substitution of γ Amino Acid Residues at the (i + 2) Position of αγ Turn Segments on the Conformation of Template β-Hairpin Peptides. J Org Chem 2021;86:11310-23. [PMID: 34479402 DOI: 10.1021/acs.joc.1c00351] [Reference Citation Analysis]
48 Kim H, Yoo YD, Lee GY. Identification of Bacterial Membrane Selectivity of Romo1-Derived Antimicrobial Peptide AMPR-22 via Molecular Dynamics. IJMS 2022;23:7404. [DOI: 10.3390/ijms23137404] [Reference Citation Analysis]
49 Yao Q, Zhang J, Pan G, Chen B. Mussel-Inspired Clickable Antibacterial Peptide Coating on Ureteral Stents for Encrustation Prevention. ACS Appl Mater Interfaces 2022. [PMID: 35917447 DOI: 10.1021/acsami.2c09448] [Reference Citation Analysis]
50 Tian T, Xie W, Liu L, Fan S, Zhang H, Qin Z, Yang C. Industrial application of antimicrobial peptides based on their biological activity and structure-activity relationship. Crit Rev Food Sci Nutr 2021;:1-16. [PMID: 34955061 DOI: 10.1080/10408398.2021.2019673] [Reference Citation Analysis]
51 Erjavac I, Kalafatovic D, Mauša G. Coupled encoding methods for antimicrobial peptide prediction: How sensitive is a highly accurate model? Artificial Intelligence in the Life Sciences 2022;2:100034. [DOI: 10.1016/j.ailsci.2022.100034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Kaewchomphunuch T, Charoenpichitnunt T, Thongbaiyai V, Ngamwongsatit N, Kaeoket K. Cell-free culture supernatants of Lactobacillus spp. and Pediococcus spp. inhibit growth of pathogenic Escherichia coli isolated from pigs in Thailand. BMC Vet Res 2022;18:60. [PMID: 35093088 DOI: 10.1186/s12917-022-03140-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Branco P, Diniz M, Albergaria H. Evaluation of the Biocontrol Potential of a Commercial Yeast Starter against Fuel-Ethanol Fermentation Contaminants. Fermentation 2022;8:233. [DOI: 10.3390/fermentation8050233] [Reference Citation Analysis]
54 Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022;27:2675. [PMID: 35566025 DOI: 10.3390/molecules27092675] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 González-acosta S, Baca-gonzález V, Asensio-calavia P, Otazo-pérez A, López MR, Morales-delanuez A, Pérez de la Lastra JM. Efficient Oral Priming of Tenebrio molitor Larvae Using Heat-Inactivated Microorganisms. Vaccines 2022;10:1296. [DOI: 10.3390/vaccines10081296] [Reference Citation Analysis]
56 Sansi MS, Iram D, Zanab S, Vij S, Puniya AK, Singh A, Ashutosh, Meena S. Antimicrobial bioactive peptides from goat Milk proteins: In silico prediction and analysis. J Food Biochem 2022;:e14311. [PMID: 35789493 DOI: 10.1111/jfbc.14311] [Reference Citation Analysis]
57 Luo Y, Song Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int J Mol Sci 2021;22:11401. [PMID: 34768832 DOI: 10.3390/ijms222111401] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Lopes BS, Hanafiah A, Nachimuthu R, Muthupandian S, Md Nesran ZN, Patil S. The Role of Antimicrobial Peptides as Antimicrobial and Antibiofilm Agents in Tackling the Silent Pandemic of Antimicrobial Resistance. Molecules 2022;27:2995. [PMID: 35566343 DOI: 10.3390/molecules27092995] [Reference Citation Analysis]
59 Nonin-Lecomte S, Fermon L, Felden B, Pinel-Marie ML. Bacterial Type I Toxins: Folding and Membrane Interactions. Toxins (Basel) 2021;13:490. [PMID: 34357962 DOI: 10.3390/toxins13070490] [Reference Citation Analysis]
60 Zhang C, Yang M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics 2022;11:349. [DOI: 10.3390/antibiotics11030349] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
61 Chumponanomakun P, Niramitranon J, Chairatana P, Pongprayoon P. Molecular insights into the adsorption mechanism of E21R and T7E21R human defensin 5 on a bacterial membrane. Molecular Simulation. [DOI: 10.1080/08927022.2022.2086253] [Reference Citation Analysis]
62 Mironov T, Yakovlev A, Sabaneyeva E. Together forever: Inseparable partners of the symbiotic system Paramecium multimicronucleatum/Ca. Trichorickettsia mobilis. Symbiosis. [DOI: 10.1007/s13199-022-00854-z] [Reference Citation Analysis]
63 Mousavi Maleki MS, Rostamian M, Madanchi H. Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert Rev Anti Infect Ther 2021;:1-13. [PMID: 33844613 DOI: 10.1080/14787210.2021.1912593] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
64 Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against covid-19. Mol Biol Rep 2022. [PMID: 35606604 DOI: 10.1007/s11033-022-07572-1] [Reference Citation Analysis]
65 Wang Y, Li J, Dai X, Wang Z, Ni X, Zeng D, Zeng Y, Zhang D, Pan K. Effects of Antimicrobial Peptides Gal-13 on the Growth Performance, Intestinal Microbiota, Digestive Enzyme Activities, Intestinal Morphology, Antioxidative Activities, and Immunity of Broilers. Probiotics Antimicrob Proteins 2022. [PMID: 35015242 DOI: 10.1007/s12602-021-09905-1] [Reference Citation Analysis]
66 Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. Materials (Basel) 2022;15:2388. [PMID: 35407720 DOI: 10.3390/ma15072388] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
67 Maleki Dizaj S, Salatin S, Khezri K, Lee J, Lotfipour F. Targeting Multidrug Resistance With Antimicrobial Peptide-Decorated Nanoparticles and Polymers. Front Microbiol 2022;13:831655. [DOI: 10.3389/fmicb.2022.831655] [Reference Citation Analysis]
68 Moradi M, Golmohammadi R, Najafi A, Moosazadeh Moghaddam M, Fasihi-ramandi M, Mirnejad R. A contemporary review on the important role of in silico approaches for managing different aspects of COVID-19 crisis. Informatics in Medicine Unlocked 2022;28:100862. [DOI: 10.1016/j.imu.2022.100862] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
69 Oliveras À, Moll L, Riesco-Llach G, Tolosa-Canudas A, Gil-Caballero S, Badosa E, Bonaterra A, Montesinos E, Planas M, Feliu L. D-Amino Acid-Containing Lipopeptides Derived from the Lead Peptide BP100 with Activity against Plant Pathogens. Int J Mol Sci 2021;22:6631. [PMID: 34205705 DOI: 10.3390/ijms22126631] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
70 Vanzolini T, Bruschi M, Rinaldi AC, Magnani M, Fraternale A. Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms. Int J Mol Sci 2022;23:545. [PMID: 35008974 DOI: 10.3390/ijms23010545] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
71 Ahmad-Mansour N, Loubet P, Pouget C, Dunyach-Remy C, Sotto A, Lavigne JP, Molle V. Staphylococcus aureus Toxins: An Update on Their Pathogenic Properties and Potential Treatments. Toxins (Basel) 2021;13:677. [PMID: 34678970 DOI: 10.3390/toxins13100677] [Reference Citation Analysis]
72 Teimouri H, Nguyen TN, Kolomeisky AB. Single-cell stochastic modelling of the action of antimicrobial peptides on bacteria. J R Soc Interface 2021;18:20210392. [PMID: 34520689 DOI: 10.1098/rsif.2021.0392] [Reference Citation Analysis]
73 Takahashi H, Caputo GA, Kuroda K. Amphiphilic polymer therapeutics: an alternative platform in the fight against antibiotic resistant bacteria. Biomater Sci 2021;9:2758-67. [DOI: 10.1039/d0bm01865a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
74 Pillai VVS, Kumari P, Benedetto A, Gobbo D, Ballone P. Absorption of Phosphonium Cations and Dications into a Hydrated POPC Phospholipid Bilayer: A Computational Study. J Phys Chem B 2022. [PMID: 35666883 DOI: 10.1021/acs.jpcb.2c02212] [Reference Citation Analysis]
75 Liu BR, Chiou S, Huang Y, Lee H. Bio-Membrane Internalization Mechanisms of Arginine-Rich Cell-Penetrating Peptides in Various Species. Membranes 2022;12:88. [DOI: 10.3390/membranes12010088] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
76 Xu C, Wang A, Marin M, Honnen W, Ramasamy S, Porter E, Subbian S, Pinter A, Melikyan GB, Lu W, Chang TL. Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry. Viruses 2021;13:1246. [PMID: 34206990 DOI: 10.3390/v13071246] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
77 Soni A, Brightwell G. Nature-Inspired Antimicrobial Surfaces and Their Potential Applications in Food Industries. Foods 2022;11:844. [DOI: 10.3390/foods11060844] [Reference Citation Analysis]
78 Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022;:107968. [PMID: 35489657 DOI: 10.1016/j.biotechadv.2022.107968] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021;22:11691. [PMID: 34769122 DOI: 10.3390/ijms222111691] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Ye Z, Zhou X, Xi X, Zai Y, Zhou M, Chen X, Ma C, Chen T, Wang L, Kwok HF. In Vitro & In Vivo Studies on Identifying and Designing Temporin-1CEh from the Skin Secretion of Rana chensinensis as the Optimised Antibacterial Prototype Drug. Pharmaceutics 2022;14:604. [DOI: 10.3390/pharmaceutics14030604] [Reference Citation Analysis]
81 Sharma S, Barman P, Joshi S, Preet S, Saini A. Multidrug resistance crisis during COVID-19 pandemic: Role of anti-microbial peptides as next-generation therapeutics. Colloids Surf B Biointerfaces 2021;211:112303. [PMID: 34952285 DOI: 10.1016/j.colsurfb.2021.112303] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
82 Cavaco M, Castanho MARB, Neves V. The Use of Antibody-Antibiotic Conjugates to Fight Bacterial Infections. Front Microbiol 2022;13:835677. [PMID: 35330773 DOI: 10.3389/fmicb.2022.835677] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Overcoming Methicillin-Resistance Staphylococcus aureus (MRSA) Using Antimicrobial Peptides-Silver Nanoparticles. Antibiotics 2022;11:951. [DOI: 10.3390/antibiotics11070951] [Reference Citation Analysis]
84 Akhila PP, Sunooj KV, Navaf M, Aaliya B, Sudheesh C, Sasidharan A, Sabu S, Mir SA, George J, Khaneghah AM. Application of innovative packaging technologies to manage fungi and mycotoxin contamination in agricultural products: Current status, challenges, and perspectives. Toxicon 2022:S0041-0101(22)00119-2. [PMID: 35513053 DOI: 10.1016/j.toxicon.2022.04.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Lin EMJ, Lay CL, Subramanian GS, Tan WS, Leong SSJ, Moh LCH, Lim K. Control Release Coating for Urinary Catheters with Enhanced Released Profile for Sustained Antimicrobial Protection. ACS Appl Mater Interfaces 2021;13:59263-74. [PMID: 34846837 DOI: 10.1021/acsami.1c17697] [Reference Citation Analysis]
86 Feng G, Han K, Li Y, Yang Q, Feng W, Wang J, Yang X. Undigestible Gliadin Peptide Nanoparticles Penetrate Mucus and Reduce Mucus Production Driven by Intestinal Epithelial Cell Damage. J Agric Food Chem 2021;69:7979-89. [PMID: 34251199 DOI: 10.1021/acs.jafc.1c02177] [Reference Citation Analysis]
87 Li C, Xu X, Gao J, Zhang X, Chen Y, Li R, Shen J. 3D printed scaffold for repairing bone defects in apical periodontitis. BMC Oral Health 2022;22:327. [PMID: 35941678 DOI: 10.1186/s12903-022-02362-4] [Reference Citation Analysis]
88 Ali Redha A, Valizadenia H, Siddiqui SA, Maqsood S. A state-of-art review on camel milk proteins as an emerging source of bioactive peptides with diverse nutraceutical properties. Food Chem 2021;373:131444. [PMID: 34717085 DOI: 10.1016/j.foodchem.2021.131444] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
89 Aghamiri S, Zandsalimi F, Raee P, Abdollahifar MA, Tan SC, Low TY, Najafi S, Ashrafizadeh M, Zarrabi A, Ghanbarian H, Bandehpour M. Antimicrobial peptides as potential therapeutics for breast cancer. Pharmacol Res 2021;171:105777. [PMID: 34298112 DOI: 10.1016/j.phrs.2021.105777] [Reference Citation Analysis]
90 Alkatheri AH, Yap PS, Abushelaibi A, Lai K, Cheng W, Lim SE. Host–Bacterial Interactions: Outcomes of Antimicrobial Peptide Applications. Membranes 2022;12:715. [DOI: 10.3390/membranes12070715] [Reference Citation Analysis]
91 Rashki S, Safardoust-hojaghan H, Mirzaei H, Abdulsahib WK, Mahdi MA, Salavati-niasari M, Khaledi A, Khorshidi A, Mousavi SGA. Delivery LL37 by chitosan nanoparticles for enhanced antibacterial and antibiofilm efficacy. Carbohydrate Polymers 2022;291:119634. [DOI: 10.1016/j.carbpol.2022.119634] [Reference Citation Analysis]
92 Riciluca KCT, Oliveira UC, Mendonça RZ, Bozelli Junior JC, Schreier S, da Silva Junior PI. Rondonin: antimicrobial properties and mechanism of action. FEBS Open Bio 2021. [PMID: 34254458 DOI: 10.1002/2211-5463.13253] [Reference Citation Analysis]
93 Nazarov PA. MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. Antibiotics 2022;11:734. [DOI: 10.3390/antibiotics11060734] [Reference Citation Analysis]
94 Meghashree RN, Nagaraj K. Characterization of the immune induced antimicrobial peptide in Drosophila melanogaster and Drosophila ananassae. Eur J Entomol 2021;118:355-63. [DOI: 10.14411/eje.2021.037] [Reference Citation Analysis]
95 Singh O, Hsu WL, Su EC. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features. BMC Bioinformatics 2021;22:389. [PMID: 34330209 DOI: 10.1186/s12859-021-04305-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
96 Di Somma A, Moretta A, Cané C, Scieuzo C, Salvia R, Falabella P, Duilio A. Structural and Functional Characterization of a Novel Recombinant Antimicrobial Peptide from Hermetia illucens. CIMB 2022;44:1-13. [DOI: 10.3390/cimb44010001] [Reference Citation Analysis]
97 Shannon AH, Adelman SA, Hisey EA, Potnis SS, Rozo V, Yung MW, Li JY, Murphy CJ, Thomasy SM, Leonard BC. Antimicrobial Peptide Expression at the Ocular Surface and Their Therapeutic Use in the Treatment of Microbial Keratitis. Front Microbiol 2022;13:857735. [PMID: 35722307 DOI: 10.3389/fmicb.2022.857735] [Reference Citation Analysis]
98 Garzón AG, Veras FF, Brandelli A, Drago SR. Purification, identification and in silico studies of antioxidant, antidiabetogenic and antibacterial peptides obtained from sorghum spent grain hydrolysate. LWT 2022;153:112414. [DOI: 10.1016/j.lwt.2021.112414] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
99 Vajjala M, Johnson B, Kasparek L, Leuze M, Yao Q. Profiling a Community-Specific Function Landscape for Bacterial Peptides Through Protein-Level Meta-Assembly and Machine Learning. Front Genet 2022;13:935351. [DOI: 10.3389/fgene.2022.935351] [Reference Citation Analysis]
100 Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021;:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Reference Citation Analysis]
101 Ruczyński J, Parfianowicz B, Mucha P, Wiśniewska K, Piechowicz L, Rekowski P. Structure-Activity Relationship of New Chimeric Analogs of Mastoparan from the Wasp Venom Paravespula lewisii. Int J Mol Sci 2022;23:8269. [PMID: 35897844 DOI: 10.3390/ijms23158269] [Reference Citation Analysis]
102 Kurpe SR, Grishin SY, Surin AK, Panfilov AV, Slizen MV, Chowdhury SD, Galzitskaya OV. Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2? Int J Mol Sci 2020;21:E9552. [PMID: 33333996 DOI: 10.3390/ijms21249552] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
103 Andrukhov O, Blufstein A, Behm C. A Review of Antimicrobial Activity of Dental Mesenchymal Stromal Cells: Is There Any Potential? Front Oral Health 2022;2:832976. [DOI: 10.3389/froh.2021.832976] [Reference Citation Analysis]
104 Nooranian S, Oskuee RK, Jalili A. Antimicrobial Peptides, a Pool for Novel Cell Penetrating Peptides Development and Vice Versa. Int J Pept Res Ther 2021;27:1205-20. [DOI: 10.1007/s10989-021-10161-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Coker MO, Cairo C, Garzino-Demo A. HIV-Associated Interactions Between Oral Microbiota and Mucosal Immune Cells: Knowledge Gaps and Future Directions. Front Immunol 2021;12:676669. [PMID: 34616391 DOI: 10.3389/fimmu.2021.676669] [Reference Citation Analysis]
106 Amarasekara Y, Perera IC, Katuwavila NP, Jayakody RS, Amaratunga GA, Weerasinghe L. Evaluation of novel nanocomposites for enhanced anticancer activity of XLAsp-P2 peptide. Journal of Molecular Structure 2022;1257:132618. [DOI: 10.1016/j.molstruc.2022.132618] [Reference Citation Analysis]
107 Amaning Danquah C, Minkah PAB, Osei Duah Junior I, Amankwah KB, Somuah SO. Antimicrobial Compounds from Microorganisms. Antibiotics 2022;11:285. [DOI: 10.3390/antibiotics11030285] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
108 Rosa S, Pesaresi P, Mizzotti C, Bulone V, Mezzetti B, Baraldi E, Masiero S. Game-changing alternatives to conventional fungicides: small RNAs and short peptides. Trends Biotechnol 2021:S0167-7799(21)00174-8. [PMID: 34489105 DOI: 10.1016/j.tibtech.2021.07.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
109 Pirtskhalava M, Vishnepolsky B, Grigolava M, Managadze G. Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals (Basel) 2021;14:471. [PMID: 34067510 DOI: 10.3390/ph14050471] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
110 Hernández-Aristizábal I, Ocampo-Ibáñez ID. Antimicrobial Peptides with Antibacterial Activity against Vancomycin-Resistant Staphylococcus aureus Strains: Classification, Structures, and Mechanisms of Action. Int J Mol Sci 2021;22:7927. [PMID: 34360692 DOI: 10.3390/ijms22157927] [Reference Citation Analysis]
111 Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Tony Zhou Q, Chan HK, Feng M, Li J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 2022;183:114171. [PMID: 35189264 DOI: 10.1016/j.addr.2022.114171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Borojeni IA, Gajewski G, Riahi RA. Application of Electrospun Nonwoven Fibers in Air Filters. Fibers 2022;10:15. [DOI: 10.3390/fib10020015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
113 Ali W, Elsahn A, Ting DSJ, Dua HS, Mohammed I. Host Defence Peptides: A Potent Alternative to Combat Antimicrobial Resistance in the Era of the COVID-19 Pandemic. Antibiotics 2022;11:475. [DOI: 10.3390/antibiotics11040475] [Reference Citation Analysis]
114 Hwang D, Lee SH, Goo T, Yun E. Potential of Antimicrobial Peptide-Overexpressed Tenebrio molitor Larvae Extract as a Natural Preservative for Korean Traditional Sauces. Insects 2022;13:381. [DOI: 10.3390/insects13040381] [Reference Citation Analysis]
115 Sharma P, Kaur J, Sharma G, Kashyap P. Plant derived antimicrobial peptides: Mechanism of target, isolation techniques, sources and pharmaceutical applications. J Food Biochem 2022;:e14348. [PMID: 35945701 DOI: 10.1111/jfbc.14348] [Reference Citation Analysis]
116 Chiș AA, Rus LL, Morgovan C, Arseniu AM, Frum A, Vonica-țincu AL, Gligor FG, Mureșan ML, Dobrea CM. Microbial Resistance to Antibiotics and Effective Antibiotherapy. Biomedicines 2022;10:1121. [DOI: 10.3390/biomedicines10051121] [Reference Citation Analysis]
117 Chen W, Kirui D, Millenbaugh NJ. Optimized peptide extraction method for analysis of antimicrobial peptide Kn2-7/dKn2-7 stability in human serum by LC-MS. Future Sci OA 2022;8:FSO807. [PMID: 35909998 DOI: 10.2144/fsoa-2022-0013] [Reference Citation Analysis]
118 Deshayes C, Arafath MN, Apaire-marchais V, Roger E. Drug Delivery Systems for the Oral Administration of Antimicrobial Peptides: Promising Tools to Treat Infectious Diseases. Front Med Technol 2022;3:778645. [DOI: 10.3389/fmedt.2021.778645] [Reference Citation Analysis]
119 Just-Baringo X, Yeste-Vázquez A, Moreno-Morales J, Ballesté-Delpierre C, Vila J, Giralt E. Controlling Antibacterial Activity Exclusively with Visible Light: Introducing a Tetra-ortho-Chloro-Azobenzene Amino Acid. Chemistry 2021;27:12987-91. [PMID: 34227716 DOI: 10.1002/chem.202102370] [Reference Citation Analysis]
120 van Gent ME, Ali M, Nibbering PH, Kłodzińska SN. Current Advances in Lipid and Polymeric Antimicrobial Peptide Delivery Systems and Coatings for the Prevention and Treatment of Bacterial Infections. Pharmaceutics 2021;13:1840. [PMID: 34834254 DOI: 10.3390/pharmaceutics13111840] [Reference Citation Analysis]
121 Wojciechowska M, Macyszyn J, Miszkiewicz J, Grzela R, Trylska J. Stapled Anoplin as an Antibacterial Agent. Front Microbiol 2021;12:772038. [PMID: 34966367 DOI: 10.3389/fmicb.2021.772038] [Reference Citation Analysis]
122 Canepa E, Relini A, Bochicchio D, Lavagna E, Mescola A. Amphiphilic Gold Nanoparticles: A Biomimetic Tool to Gain Mechanistic Insights into Peptide-Lipid Interactions. Membranes 2022;12:673. [DOI: 10.3390/membranes12070673] [Reference Citation Analysis]
123 Bolatchiev A, Baturin V, Shchetinin E, Bolatchieva E. Novel Antimicrobial Peptides Designed Using a Recurrent Neural Network Reduce Mortality in Experimental Sepsis. Antibiotics 2022;11:411. [DOI: 10.3390/antibiotics11030411] [Reference Citation Analysis]
124 Atipairin A, Songnaka N, Krobthong S, Yingchutrakul Y, Chinnawong T, Wanganuttara T. Identification and Characterization of a Potential Antimicrobial Peptide Isolated from Soil Brevibacillus sp. WUL10 and Its Activity against MRSA Pathogens. Trop Med Infect Dis 2022;7:93. [PMID: 35736972 DOI: 10.3390/tropicalmed7060093] [Reference Citation Analysis]
125 Ciura K, Ptaszyńska N, Kapica H, Pastewska M, Łęgowska A, Rolka K, Kamysz W, Sawicki W, Greber KE. Can Immobilized Artificial Membrane Chromatography Support the Characterization of Antimicrobial Peptide Origin Derivatives? Antibiotics (Basel) 2021;10:1237. [PMID: 34680817 DOI: 10.3390/antibiotics10101237] [Reference Citation Analysis]
126 Tenea GN, Ascanta P. Bioprospecting of Ribosomally Synthesized and Post-translationally Modified Peptides Through Genome Characterization of a Novel Probiotic Lactiplantibacillus plantarum UTNGt21A Strain: A Promising Natural Antimicrobials Factory. Front Microbiol 2022;13:868025. [PMID: 35464932 DOI: 10.3389/fmicb.2022.868025] [Reference Citation Analysis]
127 Dhar D, Dey D. In silico analysis of the C-terminal domain of big defensin from the Pacific oyster. J Biomol Struct Dyn 2022;:1-13. [PMID: 35916030 DOI: 10.1080/07391102.2022.2105957] [Reference Citation Analysis]
128 Moeinabadi-Bidgoli K, Rezaee M, Rismanchi H, Mohammadi MM, Babajani A. Mesenchymal Stem Cell-Derived Antimicrobial Peptides as Potential Anti-Neoplastic Agents: New Insight into Anticancer Mechanisms of Stem Cells and Exosomes. Front Cell Dev Biol 2022;10:900418. [PMID: 35874827 DOI: 10.3389/fcell.2022.900418] [Reference Citation Analysis]
129 Luong HX, Ngan HD, Thi Phuong HB, Quoc TN, Tung TT. Multiple roles of ribosomal antimicrobial peptides in tackling global antimicrobial resistance. R Soc open sci 2022;9:211583. [DOI: 10.1098/rsos.211583] [Reference Citation Analysis]
130 Taggar R, Singh S, Bhalla V, Bhattacharyya MS, Sahoo DK. Deciphering the Antibacterial Role of Peptide From Bacillus subtilis subsp. spizizenii Ba49 Against Staphylococcus aureus. Front Microbiol 2021;12:708712. [PMID: 34489898 DOI: 10.3389/fmicb.2021.708712] [Reference Citation Analysis]
131 Quintana-Sanchez S, Gómez-Casanova N, Sánchez-Nieves J, Gómez R, Rachuna J, Wąsik S, Semaniak J, Maciejewska B, Drulis-Kawa Z, Ciepluch K, Mata FJ, Arabski M. The Antibacterial Effect of PEGylated Carbosilane Dendrimers on P. aeruginosa Alone and in Combination with Phage-Derived Endolysin. Int J Mol Sci 2022;23:1873. [PMID: 35163794 DOI: 10.3390/ijms23031873] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
132 Mehta K, Sharma P, Mujawar S, Vyas A. Role of Antimicrobial Peptides in Treatment and Prevention of Mycobacterium Tuberculosis: A Review. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10435-9] [Reference Citation Analysis]
133 Teixeira MA, Antunes JC, Seabra CL, Tohidi SD, Reis S, Amorim MTP, Felgueiras HP. Tiger 17 and pexiganan as antimicrobial and hemostatic boosters of cellulose acetate-containing poly(vinyl alcohol) electrospun mats for potential wound care purposes. Int J Biol Macromol 2022;209:1526-41. [PMID: 35469947 DOI: 10.1016/j.ijbiomac.2022.04.130] [Reference Citation Analysis]
134 Huang D, Pachuda N, Sauer JM, Dobbins D, Steckbeck J. The Engineered Antibiotic Peptide PLG0206 Eliminates Biofilms and Is a Potential Treatment for Periprosthetic Joint Infections. Antibiotics (Basel) 2021;11:41. [PMID: 35052918 DOI: 10.3390/antibiotics11010041] [Reference Citation Analysis]
135 Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol 2022;12:819563. [PMID: 35280755 DOI: 10.3389/fonc.2022.819563] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
136 Al-Bayatee NT, Ad'hiah AH. Human beta-defensins 2 and 4 are dysregulated in patients with coronavirus disease 19. Microb Pathog 2021;160:105205. [PMID: 34547411 DOI: 10.1016/j.micpath.2021.105205] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
137 Dias LM, Ferrisse TM, Medeiros KS, Cilli EM, Pavarina AC. Use of Photodynamic Therapy Associated with Antimicrobial Peptides for Bacterial Control: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022;23:3226. [PMID: 35328647 DOI: 10.3390/ijms23063226] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
138 Castillo-juárez I, Blancas-luciano BE, García-contreras R, Fernández-presas AM. Antimicrobial peptides properties beyond growth inhibition and bacterial killing. PeerJ 2022;10:e12667. [DOI: 10.7717/peerj.12667] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
139 Karnati P, Gonuguntala R, Barbadikar KM, Mishra D, Jha G, Prakasham V, Chilumula P, Shaik H, Pesari M, Sundaram RM, Chinnaswami K. Performance of Novel Antimicrobial Protein Bg_9562 and In Silico Predictions on Its Properties with Reference to Its Antimicrobial Efficiency against Rhizoctonia solani. Antibiotics 2022;11:363. [DOI: 10.3390/antibiotics11030363] [Reference Citation Analysis]
140 Buonocore F, Fausto AM, Della Pelle G, Roncevic T, Gerdol M, Picchietti S. Attacins: A Promising Class of Insect Antimicrobial Peptides. Antibiotics (Basel) 2021;10:212. [PMID: 33672685 DOI: 10.3390/antibiotics10020212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
141 S S, Muraleedharan UD. Cationic Clitoria ternatea Seed Peptide as a Potential Novel Bioactive Molecule. Protein Pept Lett 2021. [PMID: 34551687 DOI: 10.2174/0929866528666210922124735] [Reference Citation Analysis]
142 Saeed SI, Mergani A, Aklilu E, Kamaruzzman NF. Antimicrobial Peptides: Bringing Solution to the Rising Threats of Antimicrobial Resistance in Livestock. Front Vet Sci 2022;9:851052. [DOI: 10.3389/fvets.2022.851052] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
143 Venkata Subbiah H, Ramesh Babu P, Subbiah U. In silico targeting of red complex bacteria virulence factors of periodontitis with β-defensin 1. J Genet Eng Biotechnol 2022;20:59. [PMID: 35438383 DOI: 10.1186/s43141-022-00342-3] [Reference Citation Analysis]
144 Ramamurthy R, Mehta CH, Nayak UY. Structurally nanoengineered antimicrobial peptide polymers: design, synthesis and biomedical applications. World J Microbiol Biotechnol 2021;37:139. [PMID: 34278535 DOI: 10.1007/s11274-021-03109-z] [Reference Citation Analysis]
145 Song X, Liu P, Liu X, Wang Y, Wei H, Zhang J, Yu L, Yan X, He Z. Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation. Mater Sci Eng C Mater Biol Appl 2021;128:112318. [PMID: 34474869 DOI: 10.1016/j.msec.2021.112318] [Reference Citation Analysis]
146 Maione A, Bellavita R, de Alteriis E, Galdiero S, Albarano L, La Pietra A, Guida M, Parrilli E, D'Angelo C, Galdiero E, Falanga A. WMR Peptide as Antifungal and Antibiofilm against Albicans and Non-Albicans Candida Species: Shreds of Evidence on the Mechanism of Action. Int J Mol Sci 2022;23:2151. [PMID: 35216270 DOI: 10.3390/ijms23042151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
147 Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol 2021;11:668632. [PMID: 34195099 DOI: 10.3389/fcimb.2021.668632] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
148 Behera LM, Ghosh M, Rana S. Deciphering the conformational landscape of few selected aromatic noncoded amino acids (NCAAs) for applications in rational design of peptide therapeutics. Amino Acids 2022. [PMID: 35723743 DOI: 10.1007/s00726-022-03175-z] [Reference Citation Analysis]
149 Karamat-Ullah N, Demidov Y, Schramm M, Grumme D, Auer J, Bohr C, Brachvogel B, Maleki H. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure. ACS Biomater Sci Eng 2021;7:4545-56. [PMID: 34415718 DOI: 10.1021/acsbiomaterials.1c00483] [Reference Citation Analysis]
150 Namvar Arabani S, Madanchi H, Ajoudanifar H, Shabani AA. Evaluation of Antibacterial, Antifungal, and Cytotoxicity Effects of CecropinA-Magenin2 (CE-MA) Peptide and Its Truncated Derivatives and Study of Their Action Mechanism. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10433-x] [Reference Citation Analysis]
151 Hamre J, Jafri MS. Optimizing peptide inhibitors of SARS-Cov-2 nsp10/nsp16 methyltransferase predicted through molecular simulation and machine learning. Informatics in Medicine Unlocked 2022. [DOI: 10.1016/j.imu.2022.100886] [Reference Citation Analysis]
152 Okella H, Ikiriza H, Ochwo S, Ajayi CO, Ndekezi C, Nkamwesiga J, Kaggwa B, Aber J, Mtewa AG, Koffi TK, Odongo S, Vertommen D, Kato CD, Ogwang PE. Identification of Antimicrobial Peptides Isolated From the Skin Mucus of African Catfish, Clarias gariepinus (Burchell, 1822). Front Microbiol 2021;12:794631. [PMID: 34987491 DOI: 10.3389/fmicb.2021.794631] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Munteanu AC, Uivarosi V. Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review. Pharmaceutics 2021;13:874. [PMID: 34199283 DOI: 10.3390/pharmaceutics13060874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
154 Chaiarwut S, Ekabutr P, Chuysinuan P, Chanamuangkon T, Supaphol P. Surface immobilization of PCL electrospun nanofibers with pexiganan for wound dressing. J Polym Res 2021;28. [DOI: 10.1007/s10965-021-02669-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
155 Ma Z, Liu X, Nie J, Zhao H, Li W. Nano-Antimicrobial Peptides Based on Constitutional Isomerism-Dictated Self-Assembly. Biomacromolecules. [DOI: 10.1021/acs.biomac.1c01532] [Reference Citation Analysis]
156 Athira PP, Anooja VV, Anju MV, Neelima S, Archana K, Muhammed Musthafa S, Antony SP, Bright Singh IS, Philip R. A hepatic antimicrobial peptide, hepcidin from Indian major carp, Catla catla: molecular identification and functional characterization. J Genet Eng Biotechnol 2022;20:49. [PMID: 35344090 DOI: 10.1186/s43141-022-00330-7] [Reference Citation Analysis]
157 Negara BFSP, Mohibbullah M, Sohn J, Kim J, Choi J. Nutritional value and potential bioactivities of Pacific oyster ( Crassostrea gigas ). Int J of Food Sci Tech. [DOI: 10.1111/ijfs.15939] [Reference Citation Analysis]
158 Zharkova MS, Golubeva OY, Orlov DS, Vladimirova EV, Dmitriev AV, Tossi A, Shamova OV. Silver Nanoparticles Functionalized With Antimicrobial Polypeptides: Benefits and Possible Pitfalls of a Novel Anti-infective Tool. Front Microbiol 2021;12:750556. [PMID: 34975782 DOI: 10.3389/fmicb.2021.750556] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
159 Hao B, Zhou W, Theg SM. Hydrophobic mismatch is a key factor in protein transport across lipid bilayer membranes via the Tat pathway. J Biol Chem 2022;:101991. [PMID: 35490783 DOI: 10.1016/j.jbc.2022.101991] [Reference Citation Analysis]