BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nagakubo T, Nomura N, Toyofuku M. Cracking Open Bacterial Membrane Vesicles. Front Microbiol 2019;10:3026. [PMID: 32038523 DOI: 10.3389/fmicb.2019.03026] [Cited by in Crossref: 74] [Cited by in F6Publishing: 81] [Article Influence: 37.0] [Reference Citation Analysis]
Number Citing Articles
1 Laurin D, Mercier C, Quansah N, Robert JS, Usson Y, Schneider D, Hindré T, Schaack B. Extracellular Vesicles from 50,000 Generation Clones of the Escherichia coli Long-Term Evolution Experiment. IJMS 2022;23:14580. [DOI: 10.3390/ijms232314580] [Reference Citation Analysis]
2 Macnair CR, Tan M. The role of bacterial membrane vesicles in antibiotic resistance. Annals NY Academy of Science 2022. [DOI: 10.1111/nyas.14932] [Reference Citation Analysis]
3 Hosseini-giv N, Basas A, Hicks C, El-omar E, El-assaad F, Hosseini-beheshti E. Bacterial extracellular vesicles and their novel therapeutic applications in health and cancer. Front Cell Infect Microbiol 2022;12. [DOI: 10.3389/fcimb.2022.962216] [Reference Citation Analysis]
4 Olchowik-grabarek E, Sękowski S, Kwiatek A, Płaczkiewicz J, Abdulladjanova N, Shlyonsky V, Swiecicka I, Zamaraeva M. The Structural Changes in the Membranes of Staphylococcus aureus Caused by Hydrolysable Tannins Witness Their Antibacterial Activity. Membranes 2022;12:1124. [DOI: 10.3390/membranes12111124] [Reference Citation Analysis]
5 Schaack B, Hindré T, Quansah N, Hannani D, Mercier C, Laurin D. Microbiota-Derived Extracellular Vesicles Detected in Human Blood from Healthy Donors. IJMS 2022;23:13787. [DOI: 10.3390/ijms232213787] [Reference Citation Analysis]
6 Suri K, D'Souza A, Huang D, Bhavsar A, Amiji M. Bacterial extracellular vesicle applications in cancer immunotherapy. Bioact Mater 2023;22:551-66. [PMID: 36382022 DOI: 10.1016/j.bioactmat.2022.10.024] [Reference Citation Analysis]
7 Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022;13:1031785. [DOI: 10.3389/fimmu.2022.1031785] [Reference Citation Analysis]
8 Yañez A, Garduño RA, Contreras-rodríguez A. Editorial: What is known and what remains to be discovered about bacterial outer membrane vesicles, volume II. Front Microbiol 2022;13:929696. [DOI: 10.3389/fmicb.2022.929696] [Reference Citation Analysis]
9 Nikolaev YA, Tikhonova EN, El’-registan GI, Zhurina MV, Plakunov VK, Demkina EV, Zaiko EV, Bataeva DS, Nasyrov NA, Yushina YK. Comparative Investigation of the Composition and Structure of Microbial Biofilms Retrieved at Meat-Processing Plants Using Different Raw Materials. Microbiology 2022;91:577-92. [DOI: 10.1134/s0026261722601403] [Reference Citation Analysis]
10 Liu X, Xiao J, Wang S, Zhou J, Qin J, Jia Z, Wang Y, Wang Z, Zhang Y, Hao H. Research Progress on Bacterial Membrane Vesicles and Antibiotic Resistance. Int J Mol Sci 2022;23:11553. [PMID: 36232856 DOI: 10.3390/ijms231911553] [Reference Citation Analysis]
11 Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol 2022. [PMID: 36127518 DOI: 10.1038/s41579-022-00791-0] [Reference Citation Analysis]
12 Bhar S, Zhao G, Bartel JD, Sterchele H, Del Mazo A, Emerson LE, Edelmann MJ, Jones MK. Bacterial extracellular vesicles control murine norovirus infection through modulation of antiviral immune responses. Front Immunol 2022;13:909949. [DOI: 10.3389/fimmu.2022.909949] [Reference Citation Analysis]
13 Liu H, Li M, Zhang T, Liu X, Zhang H, Geng Z, Su J. Engineered bacterial extracellular vesicles for osteoporosis therapy. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138309] [Reference Citation Analysis]
14 Xie J, Li Q, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. The tremendous biomedical potential of bacterial extracellular vesicles. Trends in Biotechnology 2022. [DOI: 10.1016/j.tibtech.2022.03.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Blackburn SA, Shepherd M, Robinson GK. The polyene antifungal candicidin is selectively packaged into membrane vesicles in Streptomyces S4. Arch Microbiol 2022;204:289. [PMID: 35488016 DOI: 10.1007/s00203-022-02906-w] [Reference Citation Analysis]
16 Suri M, Mohamed Z, Bint E Naser SF, Mao X, Chen P, Daniel S, Hanrath T. Bioelectronic Platform to Investigate Charge Transfer between Photoexcited Quantum Dots and Microbial Outer Membranes. ACS Appl Mater Interfaces 2022;14:15799-810. [PMID: 35344337 DOI: 10.1021/acsami.1c25032] [Reference Citation Analysis]
17 Villageliu DN, Samuelson DR. The Role of Bacterial Membrane Vesicles in Human Health and Disease. Front Microbiol 2022;13:828704. [PMID: 35300484 DOI: 10.3389/fmicb.2022.828704] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Janda M, Robatzek S. Extracellular vesicles from phytobacteria: Properties, functions and uses. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2022.107934] [Reference Citation Analysis]
19 Nagakubo T. Biological Functions and Applications of Virus-Related Bacterial Nanoparticles: A Review. Int J Mol Sci 2022;23:2595. [PMID: 35269736 DOI: 10.3390/ijms23052595] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Duarte-Silva E, Oriá AC, Mendonça IP, de Melo MG, Paiva IHR, Maes M, Joca SRL, Peixoto CA. TINY IN SIZE, BIG IN IMPACT: EXTRACELLULAR VESICLES AS MODULATORS OF MOOD, ANXIETY AND NEURODEVELOPMENTAL DISORDERS. Neurosci Biobehav Rev 2022;:104582. [PMID: 35182538 DOI: 10.1016/j.neubiorev.2022.104582] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 vom Werth KL, Wörmann T, Kemper B, Kümpers P, Kampmeier S, Mellmann A. Investigating Morphological Changes of T-lymphocytes after Exposure with Bacterial Determinants for Early Detection of Septic Conditions. Microorganisms 2022;10:391. [DOI: 10.3390/microorganisms10020391] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Ghosh S, Mohamed Z, Shin JH, Bint E Naser SF, Bali K, Dörr T, Owens RM, Salleo A, Daniel S. Impedance sensing of antibiotic interactions with a pathogenic E. coli outer membrane supported bilayer. Biosens Bioelectron 2022;204:114045. [PMID: 35180690 DOI: 10.1016/j.bios.2022.114045] [Reference Citation Analysis]
23 Costantini PE, Vanpouille C, Firrincieli A, Cappelletti M, Margolis L, Ñahui Palomino RA. Extracellular Vesicles Generated by Gram-Positive Bacteria Protect Human Tissues Ex Vivo From HIV-1 Infection. Front Cell Infect Microbiol 2022;11:822882. [DOI: 10.3389/fcimb.2021.822882] [Reference Citation Analysis]
24 Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias-Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part I: Health and Normal Physiology: Part I: Health and Normal Physiology. J Extracell Vesicles 2022;11:e12151. [PMID: 35041249 DOI: 10.1002/jev2.12151] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
25 Meers PR. Membrane Organization Strategies in Vesicular Antibiotic Delivery. J Membr Biol 2022. [PMID: 35018488 DOI: 10.1007/s00232-021-00210-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Wuo MG, Dulberger CL, Brown RA, Sturm A, Ultee E, Bloom-ackermann Z, Choi C, Garner EC, Briegel A, Hung DT, Rubin EJ, Kiessling LL. Antibiotic action revealed by real-time imaging of the mycobacterial membrane.. [DOI: 10.1101/2022.01.07.475452] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Mosby CA, Bhar S, Phillips MB, Edelmann MJ, Jones MK. Interaction with mammalian enteric viruses alters outer membrane vesicle production and content by commensal bacteria. J Extracell Vesicles 2022;11:e12172. [PMID: 34981901 DOI: 10.1002/jev2.12172] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Moore JM, Morales Aparicio JC. Enhancing Pathogen Resistance: The Gut Microbiota and Malaria. Comprehensive Gut Microbiota 2022. [DOI: 10.1016/b978-0-12-819265-8.00097-8] [Reference Citation Analysis]
29 Bitto NJ, Zavan L, Johnston EL, Stinear TP, Hill AF, Kaparakis-Liaskos M. Considerations for the Analysis of Bacterial Membrane Vesicles: Methods of Vesicle Production and Quantification Can Influence Biological and Experimental Outcomes. Microbiol Spectr 2021;9:e0127321. [PMID: 34937167 DOI: 10.1128/Spectrum.01273-21] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
30 Vitkov L, Muñoz LE, Schoen J, Knopf J, Schauer C, Minnich B, Herrmann M, Hannig M. Neutrophils Orchestrate the Periodontal Pocket. Front Immunol 2021;12:788766. [PMID: 34899756 DOI: 10.3389/fimmu.2021.788766] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
31 Orendain-jaime EN, Serafín-higuera N, Leija-montoya AG, Martínez-coronilla G, Moreno-trujillo M, Sánchez-muñoz F, Ruiz-hernández A, González-ramírez J. MicroRNAs Encoded by Virus and Small RNAs Encoded by Bacteria Associated with Oncogenic Processes. Processes 2021;9:2234. [DOI: 10.3390/pr9122234] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021;26:7216. [PMID: 34885798 DOI: 10.3390/molecules26237216] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Macion A, Wyszyńska A, Godlewska R. Delivery of Toxins and Effectors by Bacterial Membrane Vesicles. Toxins (Basel) 2021;13:845. [PMID: 34941684 DOI: 10.3390/toxins13120845] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Campoccia D, Montanaro L, Arciola CR. Tracing the origins of extracellular DNA in bacterial biofilms: story of death and predation to community benefit. Biofouling 2021;:1-18. [PMID: 34823431 DOI: 10.1080/08927014.2021.2002987] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 Kawamoto J, Kurihara T. Membrane Vesicles Produced by Shewanella vesiculosa HM13 as a Prospective Platform for Secretory Production of Heterologous Proteins at Low Temperatures. Methods Mol Biol 2022;2414:191-205. [PMID: 34784039 DOI: 10.1007/978-1-0716-1900-1_12] [Reference Citation Analysis]
36 Çelik P, Derkuş B, Erdoğan K, Barut D, Manga EB, Yıldırım Y, Pecha S, Çabuk A. Bacterial membrane vesicle functions, laboratory methods, and applications. Biotechnol Adv 2021;:107869. [PMID: 34793882 DOI: 10.1016/j.biotechadv.2021.107869] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
37 Tran TM, Chng CP, Pu X, Ma Z, Han X, Liu X, Yang L, Huang C, Miao Y. Potentiation of plant defense by bacterial outer membrane vesicles is mediated by membrane nanodomains. Plant Cell 2021:koab276. [PMID: 34791473 DOI: 10.1093/plcell/koab276] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
38 McMillan HM, Kuehn MJ. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J 2021;40:e108174. [PMID: 34636061 DOI: 10.15252/embj.2021108174] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
39 Amatya SB, Salmi S, Kainulainen V, Karihtala P, Reunanen J. Bacterial Extracellular Vesicles in Gastrointestinal Tract Cancer: An Unexplored Territory. Cancers (Basel) 2021;13:5450. [PMID: 34771614 DOI: 10.3390/cancers13215450] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
40 Baeza N, Delgado L, Comas J, Mercade E. Phage-Mediated Explosive Cell Lysis Induces the Formation of a Different Type of O-IMV in Shewanella vesiculosa M7T. Front Microbiol 2021;12:713669. [PMID: 34690958 DOI: 10.3389/fmicb.2021.713669] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
41 Kameli N, Becker HEF, Welbers T, Jonkers DMAE, Penders J, Savelkoul P, Stassen FR. Metagenomic Profiling of Fecal-Derived Bacterial Membrane Vesicles in Crohn's Disease Patients. Cells 2021;10:2795. [PMID: 34685776 DOI: 10.3390/cells10102795] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Kozyrovska N, Reva O, Podolich O, Kukharenko O, Orlovska I, Terzova V, Zubova G, Trovatti Uetanabaro AP, Góes-neto A, Azevedo V, Barh D, Verseux C, Billi D, Kołodziejczyk AM, Foing B, Demets R, Vera JD. To Other Planets With Upgraded Millennial Kombucha in Rhythms of Sustainability and Health Support. Front Astron Space Sci 2021;8:701158. [DOI: 10.3389/fspas.2021.701158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Dai W, Li J, Li Q, Cai J, Su J, Stubenrauch C, Wang J. PncsHub: a platform for annotating and analyzing non-classically secreted proteins in Gram-positive bacteria. Nucleic Acids Res 2021:gkab814. [PMID: 34551435 DOI: 10.1093/nar/gkab814] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Mohamed Z, Shin JH, Ghosh S, Sharma AK, Pinnock F, Bint E Naser Farnush S, Dörr T, Daniel S. Clinically Relevant Bacterial Outer Membrane Models for Antibiotic Screening Applications. ACS Infect Dis 2021;7:2707-22. [PMID: 34227387 DOI: 10.1021/acsinfecdis.1c00217] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
45 Fazal S, Lee R. Biomimetic Bacterial Membrane Vesicles for Drug Delivery Applications. Pharmaceutics 2021;13:1430. [PMID: 34575506 DOI: 10.3390/pharmaceutics13091430] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
46 Kudryakova IV, Afoshin AS, Ivashina TV, Suzina NE, Leontyevskaya EA, Leontyevskaya Vasilyeva NV. Deletion of alpB Gene Influences Outer Membrane Vesicles Biogenesis of Lysobacter sp. XL1. Front Microbiol 2021;12:715802. [PMID: 34484157 DOI: 10.3389/fmicb.2021.715802] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Suissa R, Oved R, Jankelowitz G, Turjeman S, Koren O, Kolodkin-Gal I. Molecular genetics for probiotic engineering: dissecting lactic acid bacteria. Trends Microbiol 2021:S0966-842X(21)00183-9. [PMID: 34446338 DOI: 10.1016/j.tim.2021.07.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
48 Murase K, Aikawa C, Nozawa T, Nakatake A, Sakamoto K, Kikuchi T, Nakagawa I. Biological Effect of Streptococcus pyogenes-Released Extracellular Vesicles on Human Monocytic Cells, Induction of Cytotoxicity, and Inflammatory Response. Front Cell Infect Microbiol 2021;11:711144. [PMID: 34350134 DOI: 10.3389/fcimb.2021.711144] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 Park J, Kim M, Shin B, Kang M, Yang J, Lee TK, Park W. A novel decoy strategy for polymyxin resistance in Acinetobacter baumannii. Elife 2021;10:e66988. [PMID: 34180396 DOI: 10.7554/eLife.66988] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
50 Roy R, You RI, Chang CH, Yang CY, Lin NT. Carboxy-Terminal Processing Protease Controls Production of Outer Membrane Vesicles and Biofilm in Acinetobacter baumannii. Microorganisms 2021;9:1336. [PMID: 34203028 DOI: 10.3390/microorganisms9061336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Richter R, Lehr CM. Extracellular vesicles as novel assay tools to study cellular interactions of anti-infective compounds - A perspective. Adv Drug Deliv Rev 2021;173:492-503. [PMID: 33857554 DOI: 10.1016/j.addr.2021.04.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
52 Srivatsav AT, Kapoor S. The Emerging World of Membrane Vesicles: Functional Relevance, Theranostic Avenues and Tools for Investigating Membrane Function. Front Mol Biosci 2021;8:640355. [PMID: 33968983 DOI: 10.3389/fmolb.2021.640355] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
53 Abe K, Toyofuku M, Nomura N, Obana N. Autolysis-mediated membrane vesicle formation in Bacillus subtilis. Environ Microbiol 2021;23:2632-47. [PMID: 33817925 DOI: 10.1111/1462-2920.15502] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
54 White JR, Dauros-Singorenko P, Hong J, Vanholsbeeck F, Phillips A, Swift S. The complex, bidirectional role of extracellular vesicles in infection. Biochem Soc Trans 2021;49:881-91. [PMID: 33860784 DOI: 10.1042/BST20200788] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
55 Villard A, Boursier J, Andriantsitohaina R. Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis? Am J Physiol Gastrointest Liver Physiol 2021;320:G485-95. [PMID: 33471632 DOI: 10.1152/ajpgi.00362.2020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
56 Villard A, Boursier J, Andriantsitohaina R. Microbiota-derived extracellular vesicles and metabolic syndrome. Acta Physiol (Oxf) 2021;231:e13600. [PMID: 33319492 DOI: 10.1111/apha.13600] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
57 Skerniškytė J, Karazijaitė E, Lučiūnaitė A, Sužiedėlienė E. OmpA Protein-Deficient Acinetobacter baumannii Outer Membrane Vesicles Trigger Reduced Inflammatory Response. Pathogens 2021;10:407. [PMID: 33807410 DOI: 10.3390/pathogens10040407] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Yokoyama F, Imai T, Aoki W, Ueda M, Kawamoto J, Kurihara T. Identification of a Putative Sensor Protein Involved in Regulation of Vesicle Production by a Hypervesiculating Bacterium, Shewanella vesiculosa HM13. Front Microbiol 2021;12:629023. [PMID: 33679653 DOI: 10.3389/fmicb.2021.629023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Reimer SL, Beniac DR, Hiebert SL, Booth TF, Chong PM, Westmacott GR, Zhanel GG, Bay DC. Comparative Analysis of Outer Membrane Vesicle Isolation Methods With an Escherichia coli tolA Mutant Reveals a Hypervesiculating Phenotype With Outer-Inner Membrane Vesicle Content. Front Microbiol 2021;12:628801. [PMID: 33746922 DOI: 10.3389/fmicb.2021.628801] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
60 Park J, Je AR, Lee SG, Jang JH, Huh YH, Park J, Kim KW. Single- or double-membrane-bound vesicles and P, Ca, and Fe-containing granules in Xanthomonas citri cultured on a solid medium. Micron 2021;143:103024. [PMID: 33549851 DOI: 10.1016/j.micron.2021.103024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Nagakubo T, Tahara YO, Miyata M, Nomura N, Toyofuku M. Mycolic acid-containing bacteria trigger distinct types of membrane vesicles through different routes. iScience 2021;24:102015. [PMID: 33532712 DOI: 10.1016/j.isci.2020.102015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
62 Kralj-Iglič V, Pocsfalvi G, Mesarec L, Šuštar V, Hägerstrand H, Iglič A. Minimizing isotropic and deviatoric membrane energy - An unifying formation mechanism of different cellular membrane nanovesicle types. PLoS One 2020;15:e0244796. [PMID: 33382808 DOI: 10.1371/journal.pone.0244796] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
63 Loo YS, Bose RJ, McCarthy JR, Mat Azmi ID, Madheswaran T. Biomimetic bacterial and viral-based nanovesicles for drug delivery, theranostics, and vaccine applications. Drug Discov Today 2021;26:902-15. [PMID: 33383213 DOI: 10.1016/j.drudis.2020.12.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
64 Krzyżek P, Grande R, Migdał P, Paluch E, Gościniak G. Biofilm Formation as a Complex Result of Virulence and Adaptive Responses of Helicobacter pylori. Pathogens 2020;9:E1062. [PMID: 33353223 DOI: 10.3390/pathogens9121062] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
65 Grigor'eva A, Bardasheva A, Tupitsyna A, Amirkhanov N, Tikunova N, Pyshnyi D, Ryabchikova E. Changes in the Ultrastructure of Staphylococcus aureus Treated with Cationic Peptides and Chlorhexidine. Microorganisms 2020;8:E1991. [PMID: 33327493 DOI: 10.3390/microorganisms8121991] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
66 Mozaheb N, Mingeot-Leclercq MP. Membrane Vesicle Production as a Bacterial Defense Against Stress. Front Microbiol 2020;11:600221. [PMID: 33362747 DOI: 10.3389/fmicb.2020.600221] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
67 Haas-Neill S, Forsythe P. A Budding Relationship: Bacterial Extracellular Vesicles in the Microbiota-Gut-Brain Axis. Int J Mol Sci 2020;21:E8899. [PMID: 33255332 DOI: 10.3390/ijms21238899] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
68 Nasukawa T, Sugimoto R, Uchiyama J, Takemura-Uchiyama I, Murakami H, Fukuda K, Matsuzaki S, Sakaguchi M. Purification of membrane vesicles from Gram-positive bacteria using flow cytometry, after iodixanol density-gradient ultracentrifugation. Res Microbiol 2021;172:103792. [PMID: 33220407 DOI: 10.1016/j.resmic.2020.11.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
69 González-Sanmiguel J, Schuh CMAP, Muñoz-Montesino C, Contreras-Kallens P, Aguayo LG, Aguayo S. Complex Interaction between Resident Microbiota and Misfolded Proteins: Role in Neuroinflammation and Neurodegeneration. Cells 2020;9:E2476. [PMID: 33203002 DOI: 10.3390/cells9112476] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
70 Yokoyama F, Imai T, Aoki W, Ueda M, Kawamoto J, Kurihara T. Identification of a Putative Sensor Protein Involved in Regulation of Vesicle Production by a Hypervesiculating Bacterium,Shewanella vesiculosaHM13.. [DOI: 10.1101/2020.11.12.373589] [Reference Citation Analysis]
71 Kim H, Kim M, Myoung K, Kim W, Ko J, Kim KP, Cho EG. Comparative Lipidomic Analysis of Extracellular Vesicles Derived from Lactobacillus plantarum APsulloc 331261 Living in Green Tea Leaves Using Liquid Chromatography-Mass Spectrometry. Int J Mol Sci 2020;21:E8076. [PMID: 33138039 DOI: 10.3390/ijms21218076] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
72 Morales-Aparicio JC, Lara Vasquez P, Mishra S, Barrán-Berdón AL, Kamat M, Basso KB, Wen ZT, Brady LJ. The Impacts of Sortase A and the 4'-Phosphopantetheinyl Transferase Homolog Sfp on Streptococcus mutans Extracellular Membrane Vesicle Biogenesis. Front Microbiol 2020;11:570219. [PMID: 33193163 DOI: 10.3389/fmicb.2020.570219] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
73 Bose S, Aggarwal S, Singh DV, Acharya N. Extracellular vesicles: An emerging platform in gram-positive bacteria. Microb Cell 2020;7:312-22. [PMID: 33335921 DOI: 10.15698/mic2020.12.737] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
74 Dauros-Singorenko P, Hong J, Swift S, Phillips A, Blenkiron C. Effect of the Extracellular Vesicle RNA Cargo From Uropathogenic Escherichia coli on Bladder Cells. Front Mol Biosci 2020;7:580913. [PMID: 33102527 DOI: 10.3389/fmolb.2020.580913] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
75 Knoke LR, Abad Herrera S, Götz K, Justesen BH, Günther Pomorski T, Fritz C, Schäkermann S, Bandow JE, Aktas M. Agrobacterium tumefaciens Small Lipoprotein Atu8019 Is Involved in Selective Outer Membrane Vesicle (OMV) Docking to Bacterial Cells. Front Microbiol 2020;11:1228. [PMID: 32582124 DOI: 10.3389/fmicb.2020.01228] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
76 Kamasaka K, Kawamoto J, Chen C, Yokoyama F, Imai T, Ogawa T, Kurihara T. Genetic characterization and functional implications of the gene cluster for selective protein transport to extracellular membrane vesicles of Shewanella vesiculosa HM13. Biochem Biophys Res Commun 2020;526:525-31. [PMID: 32245618 DOI: 10.1016/j.bbrc.2020.03.125] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
77 Lécrivain AL, Beckmann BM. Bacterial RNA in extracellular vesicles: A new regulator of host-pathogen interactions? Biochim Biophys Acta Gene Regul Mech 2020;1863:194519. [PMID: 32142907 DOI: 10.1016/j.bbagrm.2020.194519] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]