BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Front Microbiol 2018;9:1441. [PMID: 30013539 DOI: 10.3389/fmicb.2018.01441] [Cited by in Crossref: 239] [Cited by in F6Publishing: 280] [Article Influence: 59.8] [Reference Citation Analysis]
Number Citing Articles
1 Alotaibi B, Negm WA, Elekhnawy E, El-Masry TA, Elharty ME, Saleh A, Abdelkader DH, Mokhtar FA. Antibacterial activity of nano zinc oxide green-synthesised from Gardenia thailandica triveng. Leaves against Pseudomonas aeruginosa clinical isolates: in vitro and in vivo study. Artif Cells Nanomed Biotechnol 2022;50:96-106. [PMID: 35361019 DOI: 10.1080/21691401.2022.2056191] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
2 Moradi M, Mohabatkar H, Behbahani M, Dini G. Application of G-quadruplex aptamer conjugated MSNs to deliver ampicillin for suppressing S. aureus biofilm on mice bone. Arabian Journal of Chemistry 2022;15:104274. [DOI: 10.1016/j.arabjc.2022.104274] [Reference Citation Analysis]
3 Shahabadi N, Zendehcheshm S, Khademi F. Exploring the ct-DNA and plasmid DNA binding affinity of the biogenic synthesized Chloroxine-conjugated silver nanoflowers: Spectroscopic and gel electrophoresis methods. Process Biochemistry 2022;121:360-70. [DOI: 10.1016/j.procbio.2022.07.024] [Reference Citation Analysis]
4 Krivić H, Himbert S, Sun R, Feigis M, Rheinstädter MC. Erythro-PmBs: A Selective Polymyxin B Delivery System Using Antibody-Conjugated Hybrid Erythrocyte Liposomes. ACS Infect Dis 2022. [PMID: 36173819 DOI: 10.1021/acsinfecdis.2c00017] [Reference Citation Analysis]
5 Zhou J, Cai Y, Liu Y, An H, Deng K, Ashraf MA, Zou L, Wang J. Breaking down the cell wall: Still an attractive antibacterial strategy. Front Microbiol 2022;13:952633. [DOI: 10.3389/fmicb.2022.952633] [Reference Citation Analysis]
6 Makhathini SS, Omolo CA, Kiruri LW, Walvekar P, Devnarain N, Mocktar C, Govender T. Synthesis of pH-responsive Dimethylglycine Surface-modified Branched Lipids for Targeted Delivery of Antibiotics. Chem Phys Lipids 2022;:105241. [PMID: 36152880 DOI: 10.1016/j.chemphyslip.2022.105241] [Reference Citation Analysis]
7 Sheikh BA, Bhat BA, Mir MA. Antimicrobial resistance: new insights and therapeutic implications. Appl Microbiol Biotechnol 2022. [PMID: 36121484 DOI: 10.1007/s00253-022-12175-8] [Reference Citation Analysis]
8 Son Phan K, Thu Huong Le T, Minh Nguyen T, Thu Trang Mai T, Ha Hoang P, Thang To X, Trung Nguyen T, Dang Pham K, Thu Ha P. Co‐delivery of Doxycycline, Florfenicol and Silver Nanoparticles using Alginate/Chitosan Nanocarriers. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202201954] [Reference Citation Analysis]
9 Chakraborty A, Haque SM, Ghosh D, Dey D, Mukherjee S, Maity DK, Ghosh B. Silver nanoparticle synthesis and their potency against multidrug-resistant bacteria: a green approach from tissue-cultured Coleus forskohlii. 3 Biotech 2022;12. [DOI: 10.1007/s13205-022-03295-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Romero-rodríguez A, Martínez de la Peña C, Troncoso-cotal S, Guzmán C, Sánchez S. Emerging alternatives against Clostridioides difficile infection. Anaerobe 2022. [DOI: 10.1016/j.anaerobe.2022.102638] [Reference Citation Analysis]
11 Gur T. Green synthesis, characterizations of silver nanoparticles using sumac (Rhus coriaria L.) plant extract and their antimicrobial and DNA damage protective effects. Front Chem 2022;10:968280. [DOI: 10.3389/fchem.2022.968280] [Reference Citation Analysis]
12 Zhou K, Zhang Z, Xue J, Shang J, Ding D, Zhang W, Liu Z, Yan F, Cheng N. Hybrid Ag nanoparticles/polyoxometalate-polydopamine nano-flowers loaded chitosan/gelatin hydrogel scaffolds with synergistic photothermal/chemodynamic/Ag+ anti-bacterial action for accelerated wound healing. Int J Biol Macromol 2022:S0141-8130(22)01854-2. [PMID: 36029962 DOI: 10.1016/j.ijbiomac.2022.08.151] [Reference Citation Analysis]
13 Yeo WWY, Maran S, Kong AS, Cheng W, Lim SE, Loh J, Lai K. A Metal-Containing NP Approach to Treat Methicillin-Resistant Staphylococcus aureus (MRSA): Prospects and Challenges. Materials 2022;15:5802. [DOI: 10.3390/ma15175802] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Wang Y, Li Q, Peng X, Li Z, Xiang J, Chen Y, Hao K, Wang S, Nie D, Cui Y, Lv F, Wang Y, Wu W, Guo D, Si H. Green synthesis of silver nanoparticles through oil: Promoting full-thickness cutaneous wound healing in methicillin-resistant Staphylococcus aureus infections. Front Bioeng Biotechnol 2022;10:856651. [DOI: 10.3389/fbioe.2022.856651] [Reference Citation Analysis]
15 Yadav G, Singh R. In silico analysis reveals the co-existence of CRISPR-Cas type I-F1 and type I-F2 systems and its association with restricted phage invasion in Acinetobacter baumannii. Front Microbiol 2022;13:909886. [DOI: 10.3389/fmicb.2022.909886] [Reference Citation Analysis]
16 Abdelaziz MM, Hefnawy A, Anter A, Abdellatif MM, Khalil MAF, Khalil IA. Silica-Coated Magnetic Nanoparticles for Vancomycin Conjugation. ACS Omega. [DOI: 10.1021/acsomega.2c03226] [Reference Citation Analysis]
17 Panigrahi LL, Sahoo B, Arakha M. Nanotheranostics and its role in diagnosis, treatment and prevention of COVID-19. Front Mater Sci 2022;16:220611. [PMID: 35966717 DOI: 10.1007/s11706-022-0611-y] [Reference Citation Analysis]
18 Chakraborty N, Jha D, Roy I, Kumar P, Gaurav SS, Marimuthu K, Ng OT, Lakshminarayanan R, Verma NK, Gautam HK. Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J Nanobiotechnology 2022;20:375. [PMID: 35953826 DOI: 10.1186/s12951-022-01573-9] [Reference Citation Analysis]
19 Gupta A, Maruthapandi M, Das P, Saravanan A, Jacobi G, Natan M, Banin E, Luong JHT, Gedanken A. Cuprous Oxide Nanoparticles Decorated Fabric Materials with Anti-biofilm Properties. ACS Appl Bio Mater 2022. [PMID: 35952666 DOI: 10.1021/acsabm.2c00508] [Reference Citation Analysis]
20 Vakayil R, Ramasamy S, Alahmadi TA, Almoallim HS, Natarajan N, Mathanmohun M. Boswellia serrata-mediated zinc oxide nanoparticles-coated cotton fabrics for the wound healing and antibacterial applications against nosocomial pathogens. Appl Nanosci. [DOI: 10.1007/s13204-022-02573-9] [Reference Citation Analysis]
21 Salimiyan rizi K. MXene nanosheets as a novel nanomaterial with antimicrobial applications: A literature review. Journal of Molecular Structure 2022;1262:132958. [DOI: 10.1016/j.molstruc.2022.132958] [Reference Citation Analysis]
22 Halder U, Roy RK, Biswas R, Khan D, Mazumder K, Bandopadhyay R. Synthesis of copper oxide nanoparticles using capsular polymeric substances produced by Bacillus altitudinis and investigation of its efficacy to kill pathogenic Pseudomonas aeruginosa. Chemical Engineering Journal Advances 2022;11:100294. [DOI: 10.1016/j.ceja.2022.100294] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Tang H, Zhou H, Zhang R. Antibiotic Resistance and Mechanisms of Pathogenic Bacteria in Tubo-Ovarian Abscess. Front Cell Infect Microbiol 2022;12:958210. [DOI: 10.3389/fcimb.2022.958210] [Reference Citation Analysis]
24 Ivanovic V, Popovic D, Petrovic S, Rudolf R, Majerič P, Lazarevic M, Djordjevic I, Lazic V, Radunovic M. Unraveling the Antibiofilm Activity of a New Nanogold Resin for Dentures and Epithesis. Pharmaceutics 2022;14:1513. [DOI: 10.3390/pharmaceutics14071513] [Reference Citation Analysis]
25 Majoumouo MS, Tincho MB, Yimta YD, Adekiya TA, Aruleba RT, Ayawei N, Boyom FF, Morris T. Biosynthesis of Silver Nanoparticles Using Bersama engleriana Fruits Extracts and Their Potential Inhibitory Effect on Resistant Bacteria. Crystals 2022;12:1010. [DOI: 10.3390/cryst12071010] [Reference Citation Analysis]
26 Nwabuife JC, Omolo CA, Govender T. Nano delivery systems to the rescue of ciprofloxacin against resistant bacteria "E. coli; P. aeruginosa; Saureus; and MRSA" and their infections. J Control Release 2022;349:338-53. [PMID: 35820538 DOI: 10.1016/j.jconrel.2022.07.003] [Reference Citation Analysis]
27 Lazar V, Holban A, Curutiu C, Ditu LM. Modulation of Gut Microbiota by Essential Oils and Inorganic Nanoparticles: Impact in Nutrition and Health. Front Nutr 2022;9:920413. [DOI: 10.3389/fnut.2022.920413] [Reference Citation Analysis]
28 Maela MP, van der Walt H, Serepa-dlamini MH. The Antibacterial, Antitumor Activities, and Bioactive Constituents’ Identification of Alectra sessiliflora Bacterial Endophytes. Front Microbiol 2022;13:870821. [DOI: 10.3389/fmicb.2022.870821] [Reference Citation Analysis]
29 Mumtaz S, Ali S, Mumtaz S, Mughal TA, Tahir HM, Shakir HA. Chitosan conjugated silver nanoparticles: the versatile antibacterial agents. Polym Bull . [DOI: 10.1007/s00289-022-04321-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Lin L, Wan H, Mia R, Jiang H, Liu H, Mahmud S. Bioreduction and Stabilization of Antibacterial Nanosilver Using Radix Lithospermi Phytonutrients for Azo-contaminated Wastewater Treatment: Synthesis, Optimization and Characterization. J Clust Sci. [DOI: 10.1007/s10876-022-02280-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Blackman LD, Sutherland TD, De Barro PJ, Thissen H, Locock KES. Addressing a future pandemic: how can non-biological complex drugs prepare us for antimicrobial resistance threats? Mater Horiz 2022. [PMID: 35703580 DOI: 10.1039/d2mh00254j] [Reference Citation Analysis]
32 El-Kattan N, Emam AN, Mansour AS, Ibrahim MA, Abd El-Razik AB, Allam KAM, Riad NY, Ibrahim SA. Curcumin assisted green synthesis of silver and zinc oxide nanostructures and their antibacterial activity against some clinical pathogenic multi-drug resistant bacteria. RSC Adv 2022;12:18022-38. [PMID: 35874032 DOI: 10.1039/d2ra00231k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Saxena S, Punjabi K, Ahamad N, Singh S, Bendale P, Banerjee R. Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomater Sci Eng 2022;8:2232-57. [PMID: 35546526 DOI: 10.1021/acsbiomaterials.1c01516] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 León-Buitimea A, Garza-Cárdenas CR, Román-García MF, Ramírez-Díaz CA, Ulloa-Ramírez M, Morones-Ramírez JR. Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance. Antibiotics (Basel) 2022;11:794. [PMID: 35740200 DOI: 10.3390/antibiotics11060794] [Reference Citation Analysis]
35 Yoshida S, Inaba H, Nomura R, Nakano K, Matsumoto-Nakano M. Green tea catechins inhibit Porphyromonas gulae LPS-induced inflammatory responses in human gingival epithelial cells: Running title. J Oral Biosci 2022:S1349-0079(22)00091-3. [PMID: 35660639 DOI: 10.1016/j.job.2022.05.006] [Reference Citation Analysis]
36 George S, Muhaj FF, Nguyen CD, Tyring SK. Part I Antimicrobial resistance: Bacterial pathogens of dermatologic significance and implications of rising resistance. J Am Acad Dermatol 2022;86:1189-204. [PMID: 35122894 DOI: 10.1016/j.jaad.2021.11.066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. Nanomaterials 2022;12:1841. [DOI: 10.3390/nano12111841] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Tedjani ML, Khelef A, Laouini SE, Bouafia A, Albalawi N. Optimizing the Antibacterial Activity of Iron Oxide Nanoparticles Using Central Composite Design. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02367-0] [Reference Citation Analysis]
39 Hamk M, Akçay FA, Avcı A. Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens. Prep Biochem Biotechnol 2022;:1-10. [PMID: 35616319 DOI: 10.1080/10826068.2022.2076243] [Reference Citation Analysis]
40 Akbar N, Kawish M, Khan NA, Shah MR, Alharbi AM, Alfahemi H, Siddiqui R. Hesperidin-, Curcumin-, and Amphotericin B- Based Nano-Formulations as Potential Antibacterials. Antibiotics 2022;11:696. [DOI: 10.3390/antibiotics11050696] [Reference Citation Analysis]
41 Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Sci Total Environ 2022;821:153472. [PMID: 35093375 DOI: 10.1016/j.scitotenv.2022.153472] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
42 Franzolin MR, Courrol DDS, de Souza Barreto S, Courrol LC. Eugenia uniflora L. Silver and Gold Nanoparticle Synthesis, Characterization, and Evaluation of the Photoreduction Process in Antimicrobial Activities. Microorganisms 2022;10:999. [DOI: 10.3390/microorganisms10050999] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Abo-zeid Y, Bakkar MR, Elkhouly GE, Raya NR, Zaafar D. Rhamnolipid Nano-Micelles versus Alcohol-Based Hand Sanitizer: A Comparative Study for Antibacterial Activity against Hospital-Acquired Infections and Toxicity Concerns. Antibiotics 2022;11:605. [DOI: 10.3390/antibiotics11050605] [Reference Citation Analysis]
44 Nasaj M, Farmany A, Shokoohizadeh L, Jalilian FA, Mahjoub R, Roshanaei G, Nourian A, Shayesteh OH, Arabestani MR, Omri A. Development of Chitosan-Assisted Fe3O4@SiO2 Magnetic Nanostructures Functionalized with Nisin as a Topical Combating System against Vancomycin-Intermediate Staphylococcus aureus (VISA) Skin Wound Infection in Mice. Journal of Nanomaterials 2022;2022:1-17. [DOI: 10.1155/2022/2914210] [Reference Citation Analysis]
45 Anali Bazán Henostroza M, Diniz Tavares G, Nishitani Yukuyama M, De Souza A, José Barbosa E, Carlos Avino V, Dos Santos Neto E, Rebello Lourenço F, Löbenberg R, Araci Bou-Chacra N. Antibiotic-loaded lipid-based nanocarrier: a promising strategy to overcome bacterial infection. Int J Pharm 2022;:121782. [PMID: 35489605 DOI: 10.1016/j.ijpharm.2022.121782] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Wali N, Shabbir A, Wajid N, Abbas N, Naqvi SZH. Synergistic efficacy of colistin and silver nanoparticles impregnated human amniotic membrane in a burn wound infected rat model. Sci Rep 2022;12:6414. [PMID: 35440743 DOI: 10.1038/s41598-022-10314-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Ejaz S, Ejaz S, Shahid R, Noor T, Shabbir S, Imran M. Chitosan-curcumin complexation to develop functionalized nanosystems with enhanced antimicrobial activity against hetero-resistant gastric pathogen. Int J Biol Macromol 2022;204:540-54. [PMID: 35157901 DOI: 10.1016/j.ijbiomac.2022.02.039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Zhao N, Cai R, Zhang Y, Wang X, Zhou N. A pH-Gated Functionalized Hollow Mesoporous Silica Delivery System for Photodynamic Sterilization in Staphylococcus aureus Biofilm. Materials (Basel) 2022;15:2815. [PMID: 35454508 DOI: 10.3390/ma15082815] [Reference Citation Analysis]
49 Artunduaga Bonilla JJ, Honorato L, Guimarães AJ, Miranda K, Nimrichter L. Silver Chitosan Nanocomposites are Effective to Combat Sporotrichosis. Front Nanotechnol 2022;4:857681. [DOI: 10.3389/fnano.2022.857681] [Reference Citation Analysis]
50 Binsalah M, Devanesan S, Alsalhi MS, Nooh A, Alghamdi O, Nooh N. Biomimetic Synthesis of Silver Nanoparticles Using Ethyl Acetate Extract of Urtica diocia Leaves; Characterizations and Emerging Antimicrobial Activity. Microorganisms 2022;10:789. [DOI: 10.3390/microorganisms10040789] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Linklater DP, Ivanova EP. Nanostructured antibacterial surfaces – What can be achieved? Nano Today 2022;43:101404. [DOI: 10.1016/j.nantod.2022.101404] [Reference Citation Analysis]
52 Okeke IS, Agwu KK, Ubachukwu AA, Ezema FI. Influence of transition metal doping on physiochemical and antibacterial properties of ZnO Nanoparticles: A review. Applied Surface Science Advances 2022;8:100227. [DOI: 10.1016/j.apsadv.2022.100227] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
53 Anele A, Obare S, Wei J. Recent Trends and Advances of Co3O4 Nanoparticles in Environmental Remediation of Bacteria in Wastewater. Nanomaterials 2022;12:1129. [DOI: 10.3390/nano12071129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Karakuş S, Insel MA, Kahyaoğlu İM, Albayrak İ, Ustun-Alkan F. Characterization, optimization, and evaluation of preservative efficacy of carboxymethyl cellulose/hydromagnesite stromatolite bio-nanocomposite. Cellulose (Lond) 2022;:1-17. [PMID: 35342231 DOI: 10.1007/s10570-022-04522-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Al-saggaf MS, Premkumar T. Nanoconjugation between Fungal Nanochitosan and Biosynthesized Selenium Nanoparticles with Hibiscus sabdariffa Extract for Effectual Control of Multidrug-Resistant Bacteria. Journal of Nanomaterials 2022;2022:1-9. [DOI: 10.1155/2022/7583032] [Reference Citation Analysis]
56 Skwarczynski M, Bashiri S, Yuan Y, Ziora ZM, Nabil O, Masuda K, Khongkow M, Rimsueb N, Cabral H, Ruktanonchai U, Blaskovich MAT, Toth I. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics 2022;11:412. [DOI: 10.3390/antibiotics11030412] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Weldick PJ, Wang A, Halbus AF, Paunov VN. Emerging nanotechnologies for targeting antimicrobial resistance. Nanoscale 2022;14:4018-41. [PMID: 35234774 DOI: 10.1039/d1nr08157h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
58 Ribeiro AI, Shvalya V, Cvelbar U, Silva R, Marques-oliveira R, Remião F, Felgueiras HP, Padrão J, Zille A. Stabilization of Silver Nanoparticles on Polyester Fabric Using Organo-Matrices for Controlled Antimicrobial Performance. Polymers 2022;14:1138. [DOI: 10.3390/polym14061138] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Amar IA, Kanah SS, Hijaz HA, Abdulqadir MA, Shamsi SA, Abdalsamed IA, Samba MA. Surfactant-assisted sol-gel synthesis of zinc ferrite magnetic nanoparticles for oil spills cleanup from seawater and antibacterial activity applications. WJE 2022;ahead-of-print. [DOI: 10.1108/wje-10-2021-0605] [Reference Citation Analysis]
60 Hochvaldová L, Večeřová R, Kolář M, Prucek R, Kvítek L, Lapčík L, Panáček A. Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis. Nanotechnology Reviews 2021;11:1115-42. [DOI: 10.1515/ntrev-2022-0059] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
61 Quek J, Uroro E, Goswami N, Vasilev K. Design principles for bacteria-responsive antimicrobial nanomaterials. Materials Today Chemistry 2022;23:100606. [DOI: 10.1016/j.mtchem.2021.100606] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
62 Alves-barroco C, Rivas-garcía L, Fernandes AR, Baptista PV. Light Triggered Enhancement of Antibiotic Efficacy in Biofilm Elimination Mediated by Gold-Silver Alloy Nanoparticles. Front Microbiol 2022;13:841124. [DOI: 10.3389/fmicb.2022.841124] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
63 Baláž M, Casas-luna M, Augustinyak A, Tkáčiková Ľ, Szmuc K, Kováčová M, Čelko L, Shpotyuk Y. Hybrid Ag0/Ag2CO3–eggshell–plant nanocomposites for antimicrobial action prepared by bio-mechanochemical synthesis. Appl Nanosci. [DOI: 10.1007/s13204-022-02417-6] [Reference Citation Analysis]
64 Mallick S, Nag M, Lahiri D, Pandit S, Sarkar T, Pati S, Nirmal NP, Edinur HA, Kari ZA, Ahmad Mohd Zain MR, Ray RR. Engineered Nanotechnology: An Effective Therapeutic Platform for the Chronic Cutaneous Wound. Nanomaterials 2022;12:778. [DOI: 10.3390/nano12050778] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
65 Al Hagbani T, Rizvi SMD, Hussain T, Mehmood K, Rafi Z, Moin A, Abu Lila AS, Alshammari F, Khafagy ES, Rahamathulla M, Abdallah MH. Cefotaxime Mediated Synthesis of Gold Nanoparticles: Characterization and Antibacterial Activity. Polymers (Basel) 2022;14:771. [PMID: 35215685 DOI: 10.3390/polym14040771] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
66 Gobinath P, Packialakshmi P, Ali D, Alarifi S, Gurusamy R, Idhayadhulla A, Surendrakumar R, Jalil A. Nanobased Antibacterial Drug Discovery to Treat Skin Infections of Staphylococcus aureus Using Moringa oleifera-Assisted Zinc Oxide Nanoparticle and Molecular Simulation Study. BioMed Research International 2022;2022:1-14. [DOI: 10.1155/2022/7228259] [Reference Citation Analysis]
67 Prema P, Subha Ranjani S, Ramesh Kumar K, Veeramanikandan V, Mathiyazhagan N, Nguyen V, Balaji P. Microbial synthesis of silver nanoparticles using Lactobacillus plantarum for antioxidant, antibacterial activities. Inorganic Chemistry Communications 2022;136:109139. [DOI: 10.1016/j.inoche.2021.109139] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
68 Yayehrad AT, Wondie GB, Marew T. Different Nanotechnology Approaches for Ciprofloxacin Delivery Against Multidrug-Resistant Microbes. IDR 2022;Volume 15:413-26. [DOI: 10.2147/idr.s348643] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
69 Morone MV, Dell'annunziata F, Giugliano R, Chianese A, De Filippis A, Rinaldi L, Gambardella U, Franci G, Galdiero M, Morone A. Pulsed laser ablation of magnetic nanoparticles as a novel antibacterial strategy against gram positive bacteria. Applied Surface Science Advances 2022;7:100213. [DOI: 10.1016/j.apsadv.2022.100213] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
70 Nallal VUM, Razia M, Duru OA, Ramalingam G, Chinnappan S, Chandrasekaran M, Gengan RM, Chung WJ, Chang SW, Ravindran B, Sathasivam K. Eco-Friendly Synthesis of Multishaped Crystalline Silver Nanoparticles Using Hill Garlic Extract and Their Potential Application as an Antifungal Agent. Journal of Nanomaterials 2022;2022:1-7. [DOI: 10.1155/2022/7613210] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Nocchetti M, Boccalon E, Pica M, Giordano NMR, Finori F, Pietrella D, Cipiciani A. Overcoming Antibiotic Resistance: Playing the 'Silver Nanobullet' Card. Materials (Basel) 2022;15:932. [PMID: 35160881 DOI: 10.3390/ma15030932] [Reference Citation Analysis]
72 Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuzio F, Saturnino C, Aquaro S, Rosano C, Sinicropi MS. Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies. Molecules 2022;27:616. [PMID: 35163878 DOI: 10.3390/molecules27030616] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 19.0] [Reference Citation Analysis]
73 Mohamed MBED, Abo El-Ela FI, Mahmoud RK, Farghali AA, Gamil S, Aziz SAAA. Cefotax-magnetic nanoparticles as an alternative approach to control Methicillin-Resistant Staphylococcus aureus (MRSA) from different sources. Sci Rep 2022;12:624. [PMID: 35022432 DOI: 10.1038/s41598-021-04160-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
74 Moorthy K, Chang K, Yu P, Wu W, Liao M, Huang H, Chien H, Chiang C. Synergistic actions of phytonutrient capped nanosilver as a novel broad-spectrum antimicrobial agent: unveiling the antibacterial effectiveness and bactericidal mechanism. New J Chem . [DOI: 10.1039/d2nj02469a] [Reference Citation Analysis]
75 Thakur D, Ta QTH, Noh J. Photosensitizer-Conjugated Hollow ZnFe 2 O 4 Nanoparticles for Antibacterial Near-Infrared Photodynamic Therapy. ACS Appl Nano Mater 2022;5:1533-41. [DOI: 10.1021/acsanm.1c04254] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Sedghi LM, Bacino M, Kapila YL. Periodontal Disease: The Good, The Bad, and The Unknown. Front Cell Infect Microbiol 2021;11:766944. [PMID: 34950607 DOI: 10.3389/fcimb.2021.766944] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
77 Chattopadhyay K, Mandal M, Maiti DK. Smart Metal-Organic Frameworks for Biotechnological Applications: A Mini-Review. ACS Appl Bio Mater 2021;4:8159-71. [PMID: 35005918 DOI: 10.1021/acsabm.1c00982] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Şen Karaman D, Kietz C, Govardhanam P, Slita A, Manea A, Pamukçu A, Meinander A, Rosenholm JM. Core@shell structured ceria@mesoporous silica nanoantibiotics restrain bacterial growth in vitro and in vivo. Mater Sci Eng C Mater Biol Appl 2021;:112607. [PMID: 35525761 DOI: 10.1016/j.msec.2021.112607] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021;19:697. [PMID: 34940696 DOI: 10.3390/md19120697] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
80 Zamani K, Allah-Bakhshi N, Akhavan F, Yousefi M, Golmoradi R, Ramezani M, Bach H, Razavi S, Irajian GR, Gerami M, Pakdin-Parizi A, Tafrihi M, Ramezani F. Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeruginosa. BMC Biotechnol 2021;21:68. [PMID: 34876083 DOI: 10.1186/s12896-021-00727-1] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
81 Ghosh M, Mandal S, Roy A, Mondal P, Mukhopadhyay SK, Chakrabarty S, Chakrabarti G, Pradhan S. Synthesis and characterization of a novel nanocarrier for biocompatible targeting of an antibacterial therapeutic agent with enhanced activity. Journal of Drug Delivery Science and Technology 2021;66:102821. [DOI: 10.1016/j.jddst.2021.102821] [Reference Citation Analysis]
82 Han HS, Koo SY, Choi KY. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioactive Materials 2021. [DOI: 10.1016/j.bioactmat.2021.11.027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
83 Ranjani S, Matheen A, Antony Jenish A, Hemalatha S. Nanotechnology derived natural poly bio-silver nanoparticles as a potential alternate biomaterial to protect against human pathogens. Materials Letters 2021;304:130555. [DOI: 10.1016/j.matlet.2021.130555] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 9.0] [Reference Citation Analysis]
84 Jacqueline C, Caillon J, Meyer O, Dailly E, Simonsson C, Lenaerts V, Asehnoune K, Reghal A, Potel G. Efficacy of Nanoencapsulated Daptomycin in an Experimental Methicillin-Resistant Staphylococcus aureus Bone and Joint Infection Model. Antimicrob Agents Chemother 2021;65:e0076821. [PMID: 34606337 DOI: 10.1128/AAC.00768-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Elashnikov R, Ulbrich P, Vokatá B, Pavlíčková VS, Švorčík V, Lyutakov O, Rimpelová S. Physically Switchable Antimicrobial Surfaces and Coatings: General Concept and Recent Achievements. Nanomaterials (Basel) 2021;11:3083. [PMID: 34835852 DOI: 10.3390/nano11113083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
86 Skłodowski K, Chmielewska SJ, Depciuch J, Deptuła P, Piktel E, Daniluk T, Zakrzewska M, Czarnowski M, Cieśluk M, Durnaś B, Parlińska-Wojtan M, Savage PB, Bucki R. Ceragenin-Coated Non-Spherical Gold Nanoparticles as Novel Candidacidal Agents. Pharmaceutics 2021;13:1940. [PMID: 34834355 DOI: 10.3390/pharmaceutics13111940] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
87 Cui H, Smith AL. Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: A comprehensive review. Environ Res 2021;:112373. [PMID: 34774508 DOI: 10.1016/j.envres.2021.112373] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
88 Vanić Ž, Jøraholmen MW, Škalko-Basnet N. Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Adv Drug Deliv Rev 2021;178:113855. [PMID: 34214638 DOI: 10.1016/j.addr.2021.113855] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
89 Karthik V, Poornima S, Vigneshwaran A, Raj DPRDD, Subbaiya R, Manikandan S, Saravanan M. Nanoarchitectonics is an emerging drug/gene delivery and targeting strategy -a critical review. Journal of Molecular Structure 2021;1243:130844. [DOI: 10.1016/j.molstruc.2021.130844] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
90 Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev 2021;50:12037-69. [PMID: 34533144 DOI: 10.1039/d0cs00031k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 23] [Article Influence: 1.0] [Reference Citation Analysis]
91 Metryka O, Wasilkowski D, Mrozik A. Insight into the Antibacterial Activity of Selected Metal Nanoparticles and Alterations within the Antioxidant Defence System in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int J Mol Sci 2021;22:11811. [PMID: 34769242 DOI: 10.3390/ijms222111811] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
92 Hussain A, Kousar S, Ullah I, Zulfiqar A, Ali HA, Manzoor A, Aziz A, Javaid A, Aziz M, Khaliq B, Nazir H, Khan AA, Akrem A, Saeed MQ. Investigations on Acinetophage, QAB 3.4, Targeting Extensively Drug-Resistant Acinetobacter baumannii Isolates. Infect Drug Resist 2021;14:4261-9. [PMID: 34703252 DOI: 10.2147/IDR.S307494] [Reference Citation Analysis]
93 Laourari I, Lakhdari N, Belgherbi O, Medjili C, Berkani M, Vasseghian Y, Golzadeh N, Lakhdari D. Antimicrobial and antifungal properties of NiCu-PANI/PVA quaternary nanocomposite synthesized by chemical oxidative polymerization of polyaniline. Chemosphere 2021;:132696. [PMID: 34718011 DOI: 10.1016/j.chemosphere.2021.132696] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
94 Das P, Ghosh S, Nayak B. Phyto-fabricated Nanoparticles and Their Anti-biofilm Activity: Progress and Current Status. Front Nanotechnol 2021;3:739286. [DOI: 10.3389/fnano.2021.739286] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
95 Al-Wrafy FA, Al-Gheethi AA, Ponnusamy SK, Noman EA, Fattah SA. Nanoparticles approach to eradicate bacterial biofilm-related infections: A critical review. Chemosphere 2021;:132603. [PMID: 34678351 DOI: 10.1016/j.chemosphere.2021.132603] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
96 Khan S, Sharaf M, Ahmed I, Khan TU, Shabana S, Arif M, Kazmi SSUH, Liu C. Potential utility of nano-based treatment approaches to address the risk of Helicobacter pylori. Expert Rev Anti Infect Ther 2021;:1-18. [PMID: 34658307 DOI: 10.1080/14787210.2022.1990041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
97 Villapún VM, Balacco DL, Webber MA, Hall T, Lowther M, Addison O, Kuehne SA, Grover LM, Cox SC. Repeated exposure of nosocomial pathogens to silver does not select for silver resistance but does impact ciprofloxacin susceptibility. Acta Biomater 2021;134:760-73. [PMID: 34329788 DOI: 10.1016/j.actbio.2021.07.056] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
98 Osman N, Devnarain N, Omolo CA, Fasiku V, Jaglal Y, Govender T. Surface modification of nano-drug delivery systems for enhancing antibiotic delivery and activity. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1758. [PMID: 34643067 DOI: 10.1002/wnan.1758] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
99 De Canha MN, Thipe VC, Katti KV, Mandiwana V, Kalombo ML, Ray SS, Rikhotso R, Janse van Vuuren A, Lall N. The Activity of Gold Nanoparticles Synthesized Using Helichrysum odoratissimum Against Cutibacterium acnes Biofilms. Front Cell Dev Biol 2021;9:675064. [PMID: 34589479 DOI: 10.3389/fcell.2021.675064] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
100 Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev 2021;177:113948. [PMID: 34464665 DOI: 10.1016/j.addr.2021.113948] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
101 Hong Q, Huo S, Tang H, Qu X, Yue B. Smart Nanomaterials for Treatment of Biofilm in Orthopedic Implants. Front Bioeng Biotechnol 2021;9:694635. [PMID: 34589470 DOI: 10.3389/fbioe.2021.694635] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
102 Karade VC, Patil RB, Parit SB, Kim JH, Chougale AD, Dawkar VV. Insights into Shape-Based Silver Nanoparticles: A Weapon to Cope with Pathogenic Attacks. ACS Sustainable Chem Eng 2021;9:12476-507. [DOI: 10.1021/acssuschemeng.1c03797] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
103 Moorthy K, Chang KC, Wu WJ, Hsu JY, Yu PJ, Chiang CK. Systematic Evaluation of Antioxidant Efficiency and Antibacterial Mechanism of Bitter Gourd Extract Stabilized Silver Nanoparticles. Nanomaterials (Basel) 2021;11:2278. [PMID: 34578594 DOI: 10.3390/nano11092278] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
104 Yin Y, Ma L, Yan Y, Han H, Zheng L, Li X, Xu X. Cobalt phosphide nanowires as efficient near-infrared light-driven antibacterial agents with high stability and cytocompatibility. Mater Res Express 2021;8:095006. [DOI: 10.1088/2053-1591/ac22c4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
105 Wahab MA, Luming L, Matin MA, Karim MR, Aijaz MO, Alharbi HF, Abdala A, Haque R. Silver Micro-Nanoparticle-Based Nanoarchitectures: Synthesis Routes, Biomedical Applications, and Mechanisms of Action. Polymers (Basel) 2021;13:2870. [PMID: 34502910 DOI: 10.3390/polym13172870] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
106 Dey N, Kamatchi C, Vickram AS, Anbarasu K, Thanigaivel S, Palanivelu J, Pugazhendhi A, Ponnusamy VK. Role of nanomaterials in deactivating multiple drug resistance efflux pumps - A review. Environ Res 2021;204:111968. [PMID: 34453898 DOI: 10.1016/j.envres.2021.111968] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
107 Ratrey P, Das Mahapatra A, Pandit S, Hadianawala M, Majhi S, Mishra A, Datta B. Emergent antibacterial activity of N-(thiazol-2-yl)benzenesulfonamides in conjunction with cell-penetrating octaarginine. RSC Adv 2021;11:28581-92. [PMID: 35478531 DOI: 10.1039/d1ra03882f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
108 Ved Prakash G, Pallavi S, Ashutosh T, Navinit K, Priya V, Shipra P, Aradhana M. A Short Review on Advances in Nanosystems Emerging as an Effective Approaches to Control Pathogenesis of Staphylococcus spp. Glob J Infect Dis Clin Res 2021. [DOI: 10.17352/2455-5363.000046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Nowak M, Barańska-Rybak W. Nanomaterials as a Successor of Antibiotics in Antibiotic-Resistant, Biofilm Infected Wounds? Antibiotics (Basel) 2021;10:941. [PMID: 34438991 DOI: 10.3390/antibiotics10080941] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
110 Krishnamoorthi R, Bharathakumar S, Malaikozhundan B, Mahalingam PU. Mycofabrication of gold nanoparticles: Optimization, characterization, stabilization and evaluation of its antimicrobial potential on selected human pathogens. Biocatalysis and Agricultural Biotechnology 2021;35:102107. [DOI: 10.1016/j.bcab.2021.102107] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
111 Ouerghi O, Geesi MH, Ibnouf EO, Ansari MJ, Alam P, Elsanousi A, Kaiba A, Riadi Y. Sol-gel synthesized rutile TiO2 nanoparticles loaded with cardamom essential oil: Enhanced antibacterial activity. Journal of Drug Delivery Science and Technology 2021;64:102581. [DOI: 10.1016/j.jddst.2021.102581] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
112 Lin W, Zhang J, Xu JF, Pi J. The Advancing of Selenium Nanoparticles Against Infectious Diseases. Front Pharmacol 2021;12:682284. [PMID: 34393776 DOI: 10.3389/fphar.2021.682284] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
113 Bacchu MS, Ali MR, Setu MAA, Akter S, Khan MZH. Ceftizoxime loaded ZnO/L-cysteine based an advanced nanocarrier drug for growth inhibition of Salmonella typhimurium. Sci Rep 2021;11:15565. [PMID: 34330977 DOI: 10.1038/s41598-021-95195-0] [Reference Citation Analysis]
114 Tewabe A, Marew T, Birhanu G. The contribution of nano-based strategies in overcoming ceftriaxone resistance: a literature review. Pharmacol Res Perspect 2021;9:e00849. [PMID: 34331383 DOI: 10.1002/prp2.849] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
115 Alabresm A, Chandler SL, Benicewicz BC, Decho AW. Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape. Bioconjug Chem 2021. [PMID: 34319073 DOI: 10.1021/acs.bioconjchem.1c00116] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
116 Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci 2021;22:7202. [PMID: 34281254 DOI: 10.3390/ijms22137202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 60] [Article Influence: 1.0] [Reference Citation Analysis]
117 Bakkar MR, Faraag AHI, Soliman ERS, Fouda MS, Sarguos AMM, McLean GR, Hebishy AMS, Elkhouly GE, Raya NR, Abo-Zeid Y. Rhamnolipids Nano-Micelles as a Potential Hand Sanitizer. Antibiotics (Basel) 2021;10:751. [PMID: 34206211 DOI: 10.3390/antibiotics10070751] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
118 Ghaderi RS, Adibian F, Sabouri Z, Davoodi J, Kazemi M, Amel Jamehdar S, Meshkat Z, Soleimanpour S, Daroudi M. Green synthesis of selenium nanoparticle by Abelmoschus esculentus extract and assessment of its antibacterial activity. Materials Technology. [DOI: 10.1080/10667857.2021.1935602] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
119 Bisht NS, Tripathi AH, Kumar S, Mehta S, Dandapat A. Silver oxide-bismuth oxybromide nanocomposites as an excellent weapon to combat with opportunistic human pathogens. Journal of Photochemistry and Photobiology 2021;6:100031. [DOI: 10.1016/j.jpap.2021.100031] [Reference Citation Analysis]
120 Panáček D, Hochvaldová L, Bakandritsos A, Malina T, Langer M, Belza J, Martincová J, Večeřová R, Lazar P, Poláková K, Kolařík J, Válková L, Kolář M, Otyepka M, Panáček A, Zbořil R. Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics. Adv Sci (Weinh) 2021;8:2003090. [PMID: 34194925 DOI: 10.1002/advs.202003090] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
121 Maruthupandy M, Rajivgandhi G, Muneeswaran T, Anand M, Quero F. Highly efficient antibacterial activity of graphene/chitosan/magnetite nanocomposites against ESBL-producing Pseudomonas aeruginosa and Klebsiella pneumoniae. Colloids and Surfaces B: Biointerfaces 2021;202:111690. [DOI: 10.1016/j.colsurfb.2021.111690] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
122 Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021;37:108. [PMID: 34046779 DOI: 10.1007/s11274-021-03070-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 20] [Article Influence: 1.0] [Reference Citation Analysis]
123 Meena M, Zehra A, Swapnil P, Harish, Marwal A, Yadav G, Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem 2021;9:613343. [PMID: 34113600 DOI: 10.3389/fchem.2021.613343] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
124 Ahmed FY, Aly UF, Abd El-Baky RM, Waly NGFM. Effect of Titanium Dioxide Nanoparticles on the Expression of Efflux Pump and Quorum-Sensing Genes in MDR Pseudomonas aeruginosa Isolates. Antibiotics (Basel) 2021;10:625. [PMID: 34073802 DOI: 10.3390/antibiotics10060625] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
125 Chand P, Kumari S, Mondal N, Singh SP, Prasad T. Synergism of Zinc Oxide Quantum Dots with Antifungal Drugs: Potential Approach for Combination Therapy against Drug Resistant Candida albicans. Front Nanotechnol 2021;3:624564. [DOI: 10.3389/fnano.2021.624564] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Nader D, Yousef F, Kavanagh N, Ryan BK, Kerrigan SW. Targeting Internalized Staphylococcus aureus Using Vancomycin-Loaded Nanoparticles to Treat Recurrent Bloodstream Infections. Antibiotics (Basel) 2021;10:581. [PMID: 34068975 DOI: 10.3390/antibiotics10050581] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
127 Mamun MM, Sorinolu AJ, Munir M, Vejerano EP. Nanoantibiotics: Functions and Properties at the Nanoscale to Combat Antibiotic Resistance. Front Chem 2021;9:687660. [PMID: 34055750 DOI: 10.3389/fchem.2021.687660] [Cited by in Crossref: 1] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
128 Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Reyes-Reali J, Mendoza-Ramos MI, Méndez-Cruz AR, Nieto-Yañez O. Effects of Propolis on Infectious Diseases of Medical Relevance. Biology (Basel) 2021;10:428. [PMID: 34065939 DOI: 10.3390/biology10050428] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
129 Li X, Liang M, Jiang S, Cao S, Li S, Gao Y, Liu J, Bai Q, Sui N, Zhu Z. Pomegranate-Like CuO2@SiO2 Nanospheres as H2O2 Self-Supplying and Robust Oxygen Generators for Enhanced Antibacterial Activity. ACS Appl Mater Interfaces 2021;13:22169-81. [PMID: 33973462 DOI: 10.1021/acsami.1c02413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
130 Hassan YA, Khedr AI, Alkabli J, Elshaarawy RF, Nasr AM. Co-delivery of imidazolium Zn(II)salen and Origanum Syriacum essential oil by shrimp chitosan nanoparticles for antimicrobial applications. Carbohydrate Polymers 2021;260:117834. [DOI: 10.1016/j.carbpol.2021.117834] [Cited by in Crossref: 9] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
131 McNeilly O, Mann R, Hamidian M, Gunawan C. Emerging Concern for Silver Nanoparticle Resistance in Acinetobacter baumannii and Other Bacteria. Front Microbiol 2021;12:652863. [PMID: 33936010 DOI: 10.3389/fmicb.2021.652863] [Cited by in Crossref: 2] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
132 Raza S, Matuła K, Karoń S, Paczesny J. Resistance and Adaptation of Bacteria to Non-Antibiotic Antibacterial Agents: Physical Stressors, Nanoparticles, and Bacteriophages. Antibiotics (Basel) 2021;10:435. [PMID: 33924618 DOI: 10.3390/antibiotics10040435] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
133 Prinz Setter O, Movsowitz A, Goldberg S, Segal E. Antibody-Functionalized Halloysite Nanotubes for Targeting Bacterial Cells. ACS Appl Bio Mater 2021;4:4094-104. [PMID: 34085034 DOI: 10.1021/acsabm.0c01332] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
134 Thapa RK, Diep DB, Tønnesen HH. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. J Pharm Investig 2021;51:377-98. [DOI: 10.1007/s40005-021-00525-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
135 Nirmala C, Sridevi M. Characterization, Antimicrobial and Antioxidant Evaluation of Biofabricated Silver Nanoparticles from Endophytic Pantoea anthophila. J Inorg Organomet Polym Mater 2021;:1-15. [PMID: 33815028 DOI: 10.1007/s10904-021-01974-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
136 Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md Akim A, Chong PP. Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. Molecules 2021;26:1870. [PMID: 33810292 DOI: 10.3390/molecules26071870] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
137 Tang Y, Qin Z, Yin S, Sun H. Transition metal oxide and chalcogenide-based nanomaterials for antibacterial activities: an overview. Nanoscale 2021;13:6373-88. [PMID: 33885521 DOI: 10.1039/d1nr00664a] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
138 Pinilla CMB, Stincone P, Brandelli A. Proteomic analysis reveals differential responses of Listeria monocytogenes to free and nanoencapsulated nisin. Int J Food Microbiol 2021;346:109170. [PMID: 33770680 DOI: 10.1016/j.ijfoodmicro.2021.109170] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
139 Shahbandeh M, Eghdami A, Moosazadeh Moghaddam M, Jalali Nadoushan M, Salimi A, Fasihi-ramandi M, Mohammadi S, Mirzaei M, Mirnejad R. Conjugation of imipenem to silver nanoparticles for enhancement of its antibacterial activity against multidrug-resistant isolates of Pseudomonas aeruginosa. J Biosci 2021;46. [DOI: 10.1007/s12038-021-00143-9] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
140 Khorsandi K, Keyvani-Ghamsari S, Khatibi Shahidi F, Hosseinzadeh R, Kanwal S. A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. J Drug Target 2021;:1-19. [PMID: 33703979 DOI: 10.1080/1061186X.2021.1895818] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
141 Huynh PT, Nguyen GD, Tran KTL, Ho TM, Duong BT, Lam VQ, Ngo TVK, Arenal R. One-Pot, Surfactant-Free Synthesis of Gold Nanostars and Evaluation of Their Antibacterial Effects against Propionibacterium acnes. Journal of Nanomaterials 2021;2021:1-10. [DOI: 10.1155/2021/6650661] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
142 Feizi S, Cooksley CM, Bouras GS, Prestidge CA, Coenye T, Psaltis AJ, Wormald PJ, Vreugde S. Colloidal silver combating pathogenic Pseudomonas aeruginosa and MRSA in chronic rhinosinusitis. Colloids Surf B Biointerfaces 2021;202:111675. [PMID: 33690064 DOI: 10.1016/j.colsurfb.2021.111675] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
143 Peraman R, Sure SK, Dusthackeer VNA, Chilamakuru NB, Yiragamreddy PR, Pokuri C, Kutagulla VK, Chinni S. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. Futur J Pharm Sci 2021;7:56. [PMID: 33686369 DOI: 10.1186/s43094-021-00196-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
144 Liu J, Wu D, Zhu N, Wu Y, Li G. Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials. Trends in Food Science & Technology 2021;109:413-34. [DOI: 10.1016/j.tifs.2021.01.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
145 Bi Y, Xia G, Shi C, Wan J, Liu L, Chen Y, Wu Y, Zhang W, Zhou M, He H, Liu R. Therapeutic strategies against bacterial biofilms. Fundamental Research 2021;1:193-212. [DOI: 10.1016/j.fmre.2021.02.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
146 Garcia ELL, Attallah OAA, Mojicevic M, Devine DMM, Brennan Fournet M. Antimicrobial Active Bioplastics Using Triangular Silver Nanoplate Integrated Polycaprolactone and Polylactic Acid Films. Materials (Basel) 2021;14:1132. [PMID: 33670834 DOI: 10.3390/ma14051132] [Reference Citation Analysis]
147 Spirescu VA, Chircov C, Grumezescu AM, Andronescu E. Polymeric Nanoparticles for Antimicrobial Therapies: An Up-To-Date Overview. Polymers (Basel) 2021;13:724. [PMID: 33673451 DOI: 10.3390/polym13050724] [Cited by in Crossref: 10] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
148 Preethi A, Bellare JR. Tailoring Scaffolds for Orthopedic Application With Anti-Microbial Properties: Current Scenario and Future Prospects. Front Mater 2021;7:594686. [DOI: 10.3389/fmats.2020.594686] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
149 Hao C, Zhou D, Xu J, Hong S, Wei W, Zhao T, Huang H, Fang W. One-pot synthesis of vancomycin-encapsulated ZIF-8 nanoparticles as multivalent and photocatalytic antibacterial agents for selective-killing of pathogenic gram-positive bacteria. J Mater Sci 2021;56:9434-44. [DOI: 10.1007/s10853-021-05828-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
150 Amaro F, Morón Á, Díaz S, Martín-González A, Gutiérrez JC. Metallic Nanoparticles-Friends or Foes in the Battle against Antibiotic-Resistant Bacteria? Microorganisms 2021;9:364. [PMID: 33673231 DOI: 10.3390/microorganisms9020364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
151 Matus MF, Häkkinen H. Atomically Precise Gold Nanoclusters: Towards an Optimal Biocompatible System from a Theoretical-Experimental Strategy. Small 2021;17:e2005499. [PMID: 33533179 DOI: 10.1002/smll.202005499] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
152 Li Y, Zhu W, Li J, Chu H. Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms. Colloids and Surfaces B: Biointerfaces 2021;198:111465. [DOI: 10.1016/j.colsurfb.2020.111465] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
153 Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Nina PB, Jp D, Kumar S, Singh B, Tiwari RR. Futuristic Non-antibiotic Therapies to Combat Antibiotic Resistance: A Review. Front Microbiol 2021;12:609459. [PMID: 33574807 DOI: 10.3389/fmicb.2021.609459] [Cited by in Crossref: 2] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
154 Okkeh M, Bloise N, Restivo E, De Vita L, Pallavicini P, Visai L. Gold Nanoparticles: Can They Be the Next Magic Bullet for Multidrug-Resistant Bacteria? Nanomaterials (Basel) 2021;11:312. [PMID: 33530434 DOI: 10.3390/nano11020312] [Cited by in Crossref: 4] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
155 Choi JS, Jung HC, Baek YJ, Kim BY, Lee MW, Kim HD, Kim SW. Antibacterial Activity of Green-Synthesized Silver Nanoparticles Using Areca catechu Extract against Antibiotic-Resistant Bacteria. Nanomaterials (Basel) 2021;11:205. [PMID: 33466916 DOI: 10.3390/nano11010205] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
156 Sulthana R, Archer AC. Bacteriocin nanoconjugates: boon to medical and food industry. J Appl Microbiol 2021;131:1056-71. [PMID: 33368869 DOI: 10.1111/jam.14982] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
157 Colino CI, Lanao JM, Gutierrez-Millan C. Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. Mater Sci Eng C Mater Biol Appl 2021;121:111843. [PMID: 33579480 DOI: 10.1016/j.msec.2020.111843] [Cited by in Crossref: 7] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
158 Mohid SA, Bhunia A. Combining Antimicrobial Peptides with Nanotechnology: An Emerging Field in Theranostics. Curr Protein Pept Sci 2020;21:413-28. [PMID: 31889488 DOI: 10.2174/1389203721666191231111634] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
159 Awad M, Yosri M, Abdel-Aziz MM, Younis AM, Sidkey NM. Assessment of the Antibacterial Potential of Biosynthesized Silver Nanoparticles Combined with Vancomycin Against Methicillin-Resistant Staphylococcus aureus-Induced Infection in Rats. Biol Trace Elem Res 2021. [PMID: 33389618 DOI: 10.1007/s12011-020-02561-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
160 Nayak V, Singh KR, Singh AK, Singh RP. Potentialities of selenium nanoparticles in biomedical science. New J Chem 2021;45:2849-78. [DOI: 10.1039/d0nj05884j] [Cited by in Crossref: 16] [Cited by in F6Publishing: 27] [Article Influence: 16.0] [Reference Citation Analysis]
161 Ruddaraju LK, Veerla SC, Kolapalli VRM, Pallela PNVK, Padavala VS, Pammi SVN. Green-synthesized copper oxide nanostructures for potential multifaceted biomedical applications. New J Chem 2021;45:15363-70. [DOI: 10.1039/d1nj01509e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
162 Liu Y, Li Y, Shi L. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections. Journal of Controlled Release 2021;329:1102-16. [DOI: 10.1016/j.jconrel.2020.10.038] [Cited by in Crossref: 3] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
163 Vishwanath R, Negi B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Current Research in Green and Sustainable Chemistry 2021;4:100205. [DOI: 10.1016/j.crgsc.2021.100205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
164 Buyana B, Aderibigbe B, Ndinteh D, Fonkui Y, Kumar P. Alginate-pluronic topical gels loaded with thymol, norfloxacin and ZnO nanoparticles as potential wound dressings. Journal of Drug Delivery Science and Technology 2020;60:101960. [DOI: 10.1016/j.jddst.2020.101960] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
165 Ojemaye MO, Adefisoye MA, Okoh AI. Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds: A review. Journal of Environmental Management 2020;275:111234. [DOI: 10.1016/j.jenvman.2020.111234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
166 Metryka O, Wasilkowski D, Nowak A, Adamczyk-Habrajska M, Mrozik A. Impact of an Engineered Copper-Titanium Dioxide Nanocomposite and Parent Substrates on the Bacteria Viability, Antioxidant Enzymes and Fatty Acid Profiling. Int J Mol Sci 2020;21:E9089. [PMID: 33260385 DOI: 10.3390/ijms21239089] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
167 Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv 2020;27:292-308. [PMID: 32036717 DOI: 10.1080/10717544.2020.1724209] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
168 Gómez-Núñez MF, Castillo-López M, Sevilla-Castillo F, Roque-Reyes OJ, Romero-Lechuga F, Medina-Santos DI, Martínez-Daniel R, Peón AN. Nanoparticle-Based Devices in the Control of Antibiotic Resistant Bacteria. Front Microbiol 2020;11:563821. [PMID: 33324356 DOI: 10.3389/fmicb.2020.563821] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]
169 Li Y, Liao C, Tjong SC. Recent Advances in Zinc Oxide Nanostructures with Antimicrobial Activities. Int J Mol Sci 2020;21:E8836. [PMID: 33266476 DOI: 10.3390/ijms21228836] [Cited by in Crossref: 8] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
170 Zhu L, Pearson DW, Benoit SL, Xie J, Pant J, Yang Y, Mondal A, Handa H, Howe JY, Hung YC, Vidal JE, Maier RJ, Zhao Y. Highly Efficient Antimicrobial Activity of CuxFeyOz Nanoparticles against Important Human Pathogens. Nanomaterials (Basel) 2020;10:E2294. [PMID: 33233512 DOI: 10.3390/nano10112294] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 Prasad P, Gupta S. Nanobioconjugates: Weapons against Antibacterial Resistance. ACS Appl Bio Mater 2020;3:8271-85. [DOI: 10.1021/acsabm.0c01107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
172 Colilla M, Vallet-Regí M. Targeted Stimuli-Responsive Mesoporous Silica Nanoparticles for Bacterial Infection Treatment. Int J Mol Sci 2020;21:E8605. [PMID: 33203098 DOI: 10.3390/ijms21228605] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
173 Raza A, Ngieng SC, Sime FB, Cabot PJ, Roberts JA, Popat A, Kumeria T, Falconer JR. Oral meropenem for superbugs: challenges and opportunities. Drug Discov Today 2021;26:551-60. [PMID: 33197621 DOI: 10.1016/j.drudis.2020.11.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
174 Rosman NSR, Harun NA, Idris I, Ismail WIW. Eco-friendly silver nanoparticles (AgNPs) fabricated by green synthesis using the crude extract of marine polychaete, Marphysa moribidii: biosynthesis, characterisation, and antibacterial applications. Heliyon 2020;6:e05462. [PMID: 33241146 DOI: 10.1016/j.heliyon.2020.e05462] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
175 Vrancianu CO, Gheorghe I, Dobre EG, Barbu IC, Cristian RE, Popa M, Lee SH, Limban C, Vlad IM, Chifiriuc MC. Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. Int J Mol Sci 2020;21:E8527. [PMID: 33198306 DOI: 10.3390/ijms21228527] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
176 Fan Y, Lüchow M, Zhang Y, Lin J, Fortuin L, Mohanty S, Brauner A, Malkoch M. Nanogel Encapsulated Hydrogels As Advanced Wound Dressings for the Controlled Delivery of Antibiotics. Adv Funct Mater 2021;31:2006453. [DOI: 10.1002/adfm.202006453] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 7.5] [Reference Citation Analysis]
177 Brasili F, Capocefalo A, Palmieri D, Capitani F, Chiessi E, Paradossi G, Bordi F, Domenici F. Assembling patchy plasmonic nanoparticles with aggregation-dependent antibacterial activity. Journal of Colloid and Interface Science 2020;580:419-28. [DOI: 10.1016/j.jcis.2020.07.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
178 Jarrar Y, Al-doaiss A, Alfaifi M, Shati A, Al-kahtani M, Jarrar B. The influence of five metallic nanoparticles on the expression of major drug-metabolizing enzyme genes with correlation of inflammation in mouse livers. Environmental Toxicology and Pharmacology 2020;80:103449. [DOI: 10.1016/j.etap.2020.103449] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
179 Bessa LJ, Peixoto de Almeida M, Eaton P, Pereira E, Gameiro P. Silver Nanostars-Coated Surfaces with Potent Biocidal Properties. Int J Environ Res Public Health 2020;17:E7891. [PMID: 33126532 DOI: 10.3390/ijerph17217891] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
180 Bertero A, Colombo G, Cortinovis C, Bassi V, Moschini E, Bellitto N, Perego MC, Albonico M, Astori E, Dalle-Donne I, Gedanken A, Perelshtein I, Mantecca P, Caloni F. In vitro copper oxide nanoparticle toxicity on intestinal barrier. J Appl Toxicol 2021;41:291-302. [PMID: 33107989 DOI: 10.1002/jat.4047] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
181 Patil S, Chandrasekaran R. Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges. J Genet Eng Biotechnol 2020;18:67. [PMID: 33104931 DOI: 10.1186/s43141-020-00081-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
182 Kotha R, Fernandes G, Nikam AN, Kulkarni S, Pandey A, Pandey S, Mutalik S. Surface engineered bimetallic nanoparticles based therapeutic and imaging platform: recent advancements and future perspective. Materials Science and Technology 2020;36:1729-48. [DOI: 10.1080/02670836.2020.1832323] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
183 Augustyniak A, Cendrowski K, Grygorcewicz B, Jabłońska J, Nawrotek P, Trukawka M, Mijowska E, Popowska M. The Response of Pseudomonas aeruginosa PAO1 to UV-activated Titanium Dioxide/Silica Nanotubes. Int J Mol Sci 2020;21:E7748. [PMID: 33092046 DOI: 10.3390/ijms21207748] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
184 Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Tackling Multidrug Resistance in Streptococci - From Novel Biotherapeutic Strategies to Nanomedicines. Front Microbiol 2020;11:579916. [PMID: 33123110 DOI: 10.3389/fmicb.2020.579916] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
185 Fatima F, Siddiqui S, Khan WA. Nanoparticles as Novel Emerging Therapeutic Antibacterial Agents in the Antibiotics Resistant Era. Biol Trace Elem Res 2021;199:2552-64. [PMID: 33030657 DOI: 10.1007/s12011-020-02394-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
186 Grzeszczuk Z, Rosillo A, Owens Ó, Bhattacharjee S. Atomic Force Microscopy (AFM) As a Surface Mapping Tool in Microorganisms Resistant Toward Antimicrobials: A Mini-Review. Front Pharmacol 2020;11:517165. [PMID: 33123004 DOI: 10.3389/fphar.2020.517165] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
187 Al-ansari MM, Dhasarathan P, Ranjitsingh A, Al-humaid LA. Challenging multidrug-resistant urinary tract bacterial isolates via bio-inspired synthesis of silver nanoparticles using the inflorescence extracts of Tridax procumbens. Journal of King Saud University - Science 2020;32:3145-52. [DOI: 10.1016/j.jksus.2020.08.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
188 Abeleda HEP, Javier AP, Murillo AQM, Baculi RQ. Alpha-amylase conjugated biogenic silver nanoparticles as innovative strategy against biofilm-forming multidrug resistant bacteria. Biocatalysis and Agricultural Biotechnology 2020;29:101784. [DOI: 10.1016/j.bcab.2020.101784] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
189 Rahmati F, Hosseini SS, Mahuti Safai S, Asgari Lajayer B, Hatami M. New insights into the role of nanotechnology in microbial food safety. 3 Biotech 2020;10:425. [PMID: 32968610 DOI: 10.1007/s13205-020-02409-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
190 Jasim NA, Al-gasha'a FA, Al-marjani MF, Al-rahal AH, Abid HA, Al-kadhmi NA, Jakaria M, Rheima AM. ZnO nanoparticles inhibit growth and biofilm formation of vancomycin-resistant S. aureus (VRSA). Biocatalysis and Agricultural Biotechnology 2020;29:101745. [DOI: 10.1016/j.bcab.2020.101745] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
191 Vaishampayan A, Ahmed R, Wagner O, de Jong A, Haag R, Kok J, Grohmann E. Transcriptomic analysis of stress response to novel antimicrobial coatings in a clinical MRSA strain. Mater Sci Eng C Mater Biol Appl 2021;119:111578. [PMID: 33321624 DOI: 10.1016/j.msec.2020.111578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
192 Pomastowski P, Król-Górniak A, Railean-Plugaru V, Buszewski B. Zinc Oxide Nanocomposites-Extracellular Synthesis, Physicochemical Characterization and Antibacterial Potential. Materials (Basel) 2020;13:E4347. [PMID: 33007802 DOI: 10.3390/ma13194347] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
193 Baker S, Olga P, Tatiana R, Nadezhda P, Tatyana G, Tatyana R, Saveleva E, Olga K, Elizaveta G, Karina G, Ekaterina U, Anastasia S, Margarita P. Phyto-nano-hybrids of Ag-CuO particles for antibacterial activity against drug-resistant pathogens. J Genet Eng Biotechnol 2020;18:53. [PMID: 32955647 DOI: 10.1186/s43141-020-00068-0] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
194 Nizami B, Tan W, Arias-Moreno X. In silico identification of novel PrfA inhibitors to fight listeriosis: A virtual screening and molecular dynamics studies. J Mol Graph Model 2020;101:107728. [PMID: 32942202 DOI: 10.1016/j.jmgm.2020.107728] [Reference Citation Analysis]
195 Patel A, Enman J, Gulkova A, Guntoro PI, Dutkiewicz A, Ghorbani Y, Rova U, Christakopoulos P, Matsakas L. Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles. Chemosphere 2021;263:128306. [PMID: 33297243 DOI: 10.1016/j.chemosphere.2020.128306] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 0.5] [Reference Citation Analysis]
196 Prasad P, Singh R, Kamaraju S, Sritharan V, Gupta S. ε-Polylysine Nanoconjugates: Value-Added Antimicrobials for Drug-Resistant Bacteria. ACS Appl Bio Mater 2020;3:6688-96. [DOI: 10.1021/acsabm.0c00569] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
197 Vassallo A, Silletti MF, Faraone I, Milella L. Nanoparticulate Antibiotic Systems as Antibacterial Agents and Antibiotic Delivery Platforms to Fight Infections. Journal of Nanomaterials 2020;2020:1-31. [DOI: 10.1155/2020/6905631] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
198 Boluki E, Pourhajibagher M, Bahador A. The combination of antimicrobial photocatalysis and antimicrobial photodynamic therapy to eradicate the extensively drug-resistant colistin resistant Acinetobacter baumannii. Photodiagnosis and Photodynamic Therapy 2020;31:101816. [DOI: 10.1016/j.pdpdt.2020.101816] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
199 Farjadian F, Akbarizadeh AR, Tayebi L. Synthesis of novel reducing agent for formation of metronidazole-capped silver nanoparticle and evaluating antibacterial efficiency in gram-positive and gram-negative bacteria. Heliyon 2020;6:e04747. [PMID: 32913906 DOI: 10.1016/j.heliyon.2020.e04747] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
200 Lozovskis P, Jankauskaitė V, Guobienė A, Kareivienė V, Vitkauskienė A. Effect of Graphene Oxide and Silver Nanoparticles Hybrid Composite on P. aeruginosa Strains with Acquired Resistance Genes. Int J Nanomedicine 2020;15:5147-63. [PMID: 32764942 DOI: 10.2147/IJN.S235748] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
201 Alzahrani RR, Alkhulaifi MM, Al-enazi NM. In vitro biological activity of Hydroclathrus clathratus and its use as an extracellular bioreductant for silver nanoparticle formation. Green Processing and Synthesis 2020;9:416-28. [DOI: 10.1515/gps-2020-0043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
202 Mori DI, Schurr MJ, Nair DP. Selective Inhibition of Streptococci Biofilm Growth via a Hydroxylated Azobenzene Coating. Adv Mater Interfaces 2020;7:1902149. [PMID: 33575161 DOI: 10.1002/admi.201902149] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
203 Das CA, Kumar VG, Dhas TS, Karthick V, Govindaraju K, Joselin JM, Baalamurugan J. Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatalysis and Agricultural Biotechnology 2020;27:101593. [DOI: 10.1016/j.bcab.2020.101593] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 12.5] [Reference Citation Analysis]
204 Jiang Y, Liu Y, Zhang H, Yang K, Li J, Shao S. Aerobic granular sludge shows enhanced resistances to the long-term toxicity of Cu(II). Chemosphere 2020;253:126664. [DOI: 10.1016/j.chemosphere.2020.126664] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
205 Ivanova K, Ivanova A, Ramon E, Hoyo J, Sanchez-Gomez S, Tzanov T. Antibody-Enabled Antimicrobial Nanocapsules for Selective Elimination of Staphylococcus aureus. ACS Appl Mater Interfaces 2020;12:35918-27. [PMID: 32672937 DOI: 10.1021/acsami.0c09364] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
206 Al-Shabib NA, Husain FM, Qais FA, Ahmad N, Khan A, Alyousef AA, Arshad M, Noor S, Khan JM, Alam P, Albalawi TH, Shahzad SA. Phyto-Mediated Synthesis of Porous Titanium Dioxide Nanoparticles From Withania somnifera Root Extract: Broad-Spectrum Attenuation of Biofilm and Cytotoxic Properties Against HepG2 Cell Lines. Front Microbiol 2020;11:1680. [PMID: 32849352 DOI: 10.3389/fmicb.2020.01680] [Cited by in Crossref: 8] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
207 Vazquez-munoz R, Lopez-ribot JL. Nanotechnology as an Alternative to Reduce the Spread of COVID-19. Challenges 2020;11:15. [DOI: 10.3390/challe11020015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
208 Selvarajan V, Obuobi S, Ee PLR. Silica Nanoparticles-A Versatile Tool for the Treatment of Bacterial Infections. Front Chem 2020;8:602. [PMID: 32760699 DOI: 10.3389/fchem.2020.00602] [Cited by in Crossref: 15] [Cited by in F6Publishing: 49] [Article Influence: 7.5] [Reference Citation Analysis]
209 Alabresm A, Chen YP, Wichter-Chandler S, Lead J, Benicewicz BC, Decho AW. Nanoparticles as antibiotic-delivery vehicles (ADVs) overcome resistance by MRSA and other MDR bacterial pathogens: The grenade hypothesis. J Glob Antimicrob Resist 2020;22:811-7. [PMID: 32653724 DOI: 10.1016/j.jgar.2020.06.023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
210 Khalifa M, Few LL, See Too WC. ChoK-ing the Pathogenic Bacteria: Potential of Human Choline Kinase Inhibitors as Antimicrobial Agents. Biomed Res Int 2020;2020:1823485. [PMID: 32695809 DOI: 10.1155/2020/1823485] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
211 Zhang J, Chen Z, Kong J, Liang Y, Chen K, Chang Y, Yuan H, Wang Y, Liang H, Li J, Mao M, Li J, Xing G. Fullerenol Nanoparticles Eradicate Helicobacter pylori via pH-Responsive Peroxidase Activity. ACS Appl Mater Interfaces 2020. [PMID: 32486636 DOI: 10.1021/acsami.0c05509] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
212 Ahmed R, Vaishampayan A, Cuellar‐camacho JL, Wight DJ, Donskyi I, Unger W, Grohmann E, Haag R, Wagner O. Multivalent Bacteria Binding by Flexible Polycationic Microsheets Matching Their Surface Charge Density. Adv Mater Interfaces 2020;7:1902066. [DOI: 10.1002/admi.201902066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
213 Lucío MI, Kyriazi ME, Hamilton J, Batista D, Sheppard A, Sams-Dodd E, Humbert MV, Hussain I, Christodoulides M, Kanaras AG. Bactericidal Effect of 5-Mercapto-2-nitrobenzoic Acid-Coated Silver Nanoclusters against Multidrug-Resistant Neisseria gonorrhoeae. ACS Appl Mater Interfaces 2020;12:27994-8003. [PMID: 32530591 DOI: 10.1021/acsami.0c06163] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
214 Alves Ferreira D, M D R S Martins L, R Fernandes A, Martins M. A Tale of Two Ends: Repurposing Metallic Compounds from Anti-Tumour Agents to Effective Antibacterial Activity. Antibiotics (Basel) 2020;9:E321. [PMID: 32545357 DOI: 10.3390/antibiotics9060321] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
215 Pircalabioru GG, Chifiriuc MC. Nanoparticulate drug-delivery systems for fighting microbial biofilms: from bench to bedside. Future Microbiol 2020;15:679-98. [PMID: 32495694 DOI: 10.2217/fmb-2019-0251] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
216 Charkhian H, Bodaqlouie A, Soleimannezhadbari E, Lotfollahi L, Shaykh-Baygloo N, Hosseinzadeh R, Yousefi N, Khodayar M. Comparing the Bacteriostatic Effects of Different Metal Nanoparticles Against Proteus vulgaris. Curr Microbiol 2020;77:2674-84. [PMID: 32468183 DOI: 10.1007/s00284-020-02029-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
217 Arora N, Thangavelu K, Karanikolos GN. Bimetallic Nanoparticles for Antimicrobial Applications. Front Chem 2020;8:412. [PMID: 32671014 DOI: 10.3389/fchem.2020.00412] [Cited by in Crossref: 12] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
218 Sacourbaravi R, Ansari-asl Z, Kooti M, Nobakht V, Darabpour E. Fabrication of Ag NPs/Zn-MOF Nanocomposites and Their Application as Antibacterial Agents. J Inorg Organomet Polym 2020;30:4615-21. [DOI: 10.1007/s10904-020-01601-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
219 Ebomah KE, Okoh AI. An African perspective on the prevalence, fate and effects of carbapenem resistance genes in hospital effluents and wastewater treatment plant (WWTP) final effluents: A critical review. Heliyon 2020;6:e03899. [PMID: 32420480 DOI: 10.1016/j.heliyon.2020.e03899] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
220 Duverger E, Picaud F. Theoretical study of ciprofloxacin antibiotic trapping on graphene or boron nitride oxide nanoflakes. J Mol Model 2020;26. [DOI: 10.1007/s00894-020-04410-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
221 Cheeseman S, Christofferson AJ, Kariuki R, Cozzolino D, Daeneke T, Crawford RJ, Truong VK, Chapman J, Elbourne A. Antimicrobial Metal Nanomaterials: From Passive to Stimuli-Activated Applications. Adv Sci (Weinh) 2020;7:1902913. [PMID: 32440470 DOI: 10.1002/advs.201902913] [Cited by in Crossref: 72] [Cited by in F6Publishing: 70] [Article Influence: 36.0] [Reference Citation Analysis]
222 Vandera KA, Picconi P, Valero M, González-gaitano G, Woods A, Zain NMM, Bruce KD, Clifton LA, Skoda MWA, Rahman KM, Harvey RD, Dreiss CA. Antibiotic-in-Cyclodextrin-in-Liposomes: Formulation Development and Interactions with Model Bacterial Membranes. Mol Pharmaceutics 2020;17:2354-69. [DOI: 10.1021/acs.molpharmaceut.0c00096] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
223 Ucak S, Sudagidan M, Borsa BA, Mansuroglu B, Ozalp VC. Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nanoparticles for Staphylococcus aureus strains. World J Microbiol Biotechnol 2020;36:69. [PMID: 32333113 DOI: 10.1007/s11274-020-02845-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
224 Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Front Chem 2020;8:286. [PMID: 32391321 DOI: 10.3389/fchem.2020.00286] [Cited by in Crossref: 45] [Cited by in F6Publishing: 82] [Article Influence: 22.5] [Reference Citation Analysis]
225 Sur VP, Mazumdar A, Ashrafi A, Mukherjee A, Milosavljevic V, Michalkova H, Kopel P, Richtera L, Moulick A. A Novel Biocompatible Titanium-Gadolinium Quantum Dot as a Bacterial Detecting Agent with High Antibacterial Activity. Nanomaterials (Basel) 2020;10:E778. [PMID: 32316666 DOI: 10.3390/nano10040778] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
226 Behdad R, Pargol M, Mirzaie A, Karizi SZ, Noorbazargan H, Akbarzadeh I. Efflux pump inhibitory activity of biologically synthesized silver nanoparticles against multidrug-resistant Acinetobacter baumannii clinical isolates. J Basic Microbiol 2020;60:494-507. [DOI: 10.1002/jobm.201900712] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
227 Carver JA, Simpson AL, Rathi RP, Normil N, Lee AG, Force MD, Fiocca KA, Maley CE, Dijoseph KM, Goldstein AL, Attari AA, O’malley HL, Zaccaro JG, Mccampbell NM, Wentz CA, Long JE, Mcqueen LM, Sirch FJ, Johnson BK, Divis ME, Chorney ML, Distefano SL, Yost HM, Greyson BL, Cid EA, Lee K, Yhap CJ, Dong M, Thomas DL, Banks BE, Newman RB, Rodriguez J, Segil AT, Siberski JA, Lobo AL, Ellison MD. Functionalized Single-Walled Carbon Nanotubes and Nanographene Oxide to Overcome Antibiotic Resistance in Tetracycline-Resistant Escherichia coli. ACS Appl Nano Mater 2020;3:3910-21. [DOI: 10.1021/acsanm.0c00677] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
228 Jee S, Kim M, Shinde SK, Ghodake GS, Sung J, Kadam AA. Assembling ZnO and Fe3O4 nanostructures on halloysite nanotubes for anti-bacterial assessments. Applied Surface Science 2020;509:145358. [DOI: 10.1016/j.apsusc.2020.145358] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
229 Prasad R, Pal D, Mohammad W. Therapeutic Targets in Telomerase and Telomere Biology of Cancers. Indian J Clin Biochem 2020;35:135-46. [PMID: 32226245 DOI: 10.1007/s12291-020-00876-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
230 Ahmady IM, Hameed MK, Almehdi AM, Arooj M, Workie B, Sahle-Demessie E, Han C, Mohamed AA. Green and cytocompatible carboxyl modified gold-lysozyme nanoantibacterial for combating multidrug-resistant superbugs. Biomater Sci 2019;7:5016-26. [PMID: 31620700 DOI: 10.1039/c9bm00935c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
231 Tăbăran AF, Matea CT, Mocan T, Tăbăran A, Mihaiu M, Iancu C, Mocan L. Silver Nanoparticles for the Therapy of Tuberculosis. Int J Nanomedicine 2020;15:2231-58. [PMID: 32280217 DOI: 10.2147/IJN.S241183] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
232 Naskar A, Lee S, Kim KS. Easy One-Pot Low-Temperature Synthesized Ag-ZnO Nanoparticles and Their Activity Against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus. Front Bioeng Biotechnol 2020;8:216. [PMID: 32266243 DOI: 10.3389/fbioe.2020.00216] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
233 Esmaeili E, Eslami-Arshaghi T, Hosseinzadeh S, Elahirad E, Jamalpoor Z, Hatamie S, Soleimani M. The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: Antimicrobial performance and cutaneous wound healing. Int J Biol Macromol 2020;152:418-27. [PMID: 32112830 DOI: 10.1016/j.ijbiomac.2020.02.295] [Cited by in Crossref: 28] [Cited by in F6Publishing: 38] [Article Influence: 14.0] [Reference Citation Analysis]
234 Bezza FA, Tichapondwa SM, Chirwa EMN. Synthesis of biosurfactant stabilized silver nanoparticles, characterization and their potential application for bactericidal purposes. J Hazard Mater 2020;393:122319. [PMID: 32120206 DOI: 10.1016/j.jhazmat.2020.122319] [Cited by in Crossref: 15] [Cited by in F6Publishing: 26] [Article Influence: 7.5] [Reference Citation Analysis]
235 Şen Karaman D, Ercan UK, Bakay E, Topaloğlu N, Rosenholm JM. Evolving Technologies and Strategies for Combating Antibacterial Resistance in the Advent of the Postantibiotic Era. Adv Funct Mater 2020;30:1908783. [DOI: 10.1002/adfm.201908783] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 22.5] [Reference Citation Analysis]
236 Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020;12:E142. [PMID: 32046289 DOI: 10.3390/pharmaceutics12020142] [Cited by in Crossref: 43] [Cited by in F6Publishing: 82] [Article Influence: 21.5] [Reference Citation Analysis]
237 Radaic A, de Jesus MB, Kapila YL. Bacterial anti-microbial peptides and nano-sized drug delivery systems: The state of the art toward improved bacteriocins. J Control Release 2020;321:100-18. [PMID: 32035192 DOI: 10.1016/j.jconrel.2020.02.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 36] [Article Influence: 11.5] [Reference Citation Analysis]
238 Cherukuri PK, Songkiatisak P, Ding F, Jault JM, Xu XN. Antibiotic Drug Nanocarriers for Probing of Multidrug ABC Membrane Transporter of Bacillus subtilis. ACS Omega 2020;5:1625-33. [PMID: 32010837 DOI: 10.1021/acsomega.9b03698] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
239 Khan F, Pham DTN, Kim Y. Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020;104:1955-76. [DOI: 10.1007/s00253-020-10360-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
240 Dong C, Zhou J, Wang P, Li T, Zhao Y, Ren X, Lu J, Wang J, Holmgren A, Zou L. Topical Therapeutic Efficacy of Ebselen Against Multidrug-Resistant Staphylococcus aureus LT-1 Targeting Thioredoxin Reductase. Front Microbiol 2019;10:3016. [PMID: 32010088 DOI: 10.3389/fmicb.2019.03016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
241 Zgura I, Preda N, Enculescu M, Diamandescu L, Negrila C, Bacalum M, Ungureanu C, Barbinta-Patrascu ME. Cytotoxicity, Antioxidant, Antibacterial, and Photocatalytic Activities of ZnO-CdS Powders. Materials (Basel) 2020;13:E182. [PMID: 31906422 DOI: 10.3390/ma13010182] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
242 Jiang L, Lee HW, Loo SCJ. Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC Adv 2020;10:8497-517. [DOI: 10.1039/c9ra10921h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
243 Westmeier D, Siemer S, Vallet C, Steinmann J, Docter D, Buer J, Knauer SK, Stauber RH. Boosting nanotoxicity to combat multidrug-resistant bacteria in pathophysiological environments. Nanoscale Adv 2020;2:5428-40. [DOI: 10.1039/d0na00644k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
244 Wang S, Gao Y, Jin Q, Ji J. Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomater Sci 2020;8:6825-39. [DOI: 10.1039/d0bm00974a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
245 Joseph MM, Hari N, Pillai RK, Nair AJ, Therakathinal T S. Galactoxyloglucan Endowed Biogenic Nanoimmunobiotics Arrests Microbial Growth and Elicits Antitumor Immunity. ACS Appl Bio Mater 2020;3:801-14. [DOI: 10.1021/acsabm.9b00834] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
246 Ramachandran V, Arokia Vijaya Anand M, David E, Venkatachalam K, Vijayakumar S, Sankaran V, Balupillai A, Sangeetha CC, Gothandam KM, Kotakadi VS, Ghidan A, Al Antary T, Xu B. Antidiabetic Activity of Gold Nanoparticles Synthesized Using Wedelolactone in RIN-5F Cell Line. Antioxidants (Basel) 2019;9:E8. [PMID: 31877697 DOI: 10.3390/antiox9010008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
247 Nain A, Tseng YT, Wei SC, Periasamy AP, Huang CC, Tseng FG, Chang HT. Capping 1,3-propanedithiol to boost the antibacterial activity of protein-templated copper nanoclusters. J Hazard Mater 2020;389:121821. [PMID: 31879116 DOI: 10.1016/j.jhazmat.2019.121821] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
248 Eid AM, Istateyeh I, Salhi N, Istateyeh T. Antibacterial Activity of Fusidic Acid and Sodium Fusidate Nanoparticles Incorporated in Pine Oil Nanoemulgel. Int J Nanomedicine 2019;14:9411-21. [PMID: 31819440 DOI: 10.2147/IJN.S229557] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
249 Rončević T, Puizina J, Tossi A. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? Int J Mol Sci 2019;20:E5713. [PMID: 31739573 DOI: 10.3390/ijms20225713] [Cited by in Crossref: 32] [Cited by in F6Publishing: 46] [Article Influence: 10.7] [Reference Citation Analysis]
250 Díaz-García D, Ardiles PR, Díaz-Sánchez M, Mena-Palomo I, Del Hierro I, Prashar S, Rodríguez-Diéguez A, Páez PL, Gómez-Ruiz S. Copper-functionalized nanostructured silica-based systems: Study of the antimicrobial applications and ROS generation against gram positive and gram negative bacteria. J Inorg Biochem 2020;203:110912. [PMID: 31743886 DOI: 10.1016/j.jinorgbio.2019.110912] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
251 Zendegani E, Dolatabadi S. The Efficacy of Imipenem Conjugated with Synthesized Silver Nanoparticles Against Acinetobacter baumannii Clinical Isolates, Iran. Biol Trace Elem Res 2020;197:330-40. [PMID: 31701463 DOI: 10.1007/s12011-019-01962-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
252 Al-Sharqi A, Apun K, Vincent M, Kanakaraju D, Bilung LM, Sum MSH. Investigation of the antibacterial activity of Ag-NPs conjugated with a specific antibody against Staphylococcus aureus after photoactivation. J Appl Microbiol 2020;128:102-15. [PMID: 31596989 DOI: 10.1111/jam.14471] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
253 Chakraborty R, Basu T. Surface Modification by Media Organics Reduces the Bacterio-toxicity of Cupric Oxide Nanoparticle against Escherichia coli. Sci Rep 2019;9:15364. [PMID: 31653977 DOI: 10.1038/s41598-019-51906-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
254 Ciro Y, Rojas J, Oñate-Garzon J, Salamanca CH. Synthesis, Characterisation and Biological Evaluation of Ampicillin-Chitosan-Polyanion Nanoparticles Produced by Ionic Gelation and Polyelectrolyte Complexation Assisted by High-Intensity Sonication. Polymers (Basel) 2019;11:E1758. [PMID: 31731554 DOI: 10.3390/polym11111758] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
255 Suresh Babu Naidu K, Murugan N, Sershen. Physico-chemical and antibacterial properties of gold nanoparticles synthesized using Avicennia marina seeds extract. Transactions of the Royal Society of South Africa 2020;75:33-9. [DOI: 10.1080/0035919x.2019.1666321] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
256 Safarov T, Kiran B, Bagirova M, Allahverdiyev AM, Abamor ES. An overview of nanotechnology-based treatment approaches against Helicobacter Pylori. Expert Review of Anti-infective Therapy 2019;17:829-40. [DOI: 10.1080/14787210.2019.1677464] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
257 Wang H, Qi H, Zhu M, Gong S, Huang Z, Zhang Y, Chen X, Jiao X. MoS2 decorated nanocomposite: Fe2O3@MoS2 inhibits the conjugative transfer of antibiotic resistance genes. Ecotoxicol Environ Saf 2019;186:109781. [PMID: 31622879 DOI: 10.1016/j.ecoenv.2019.109781] [Cited by in Crossref: 10] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
258 Kushwah M, Gaur MS, Berlina AN, Arora K. Biosynthesis of novel Ag@Cu alloy NPs for enhancement of methylene blue photocatalytic activity and antibacterial activity. Mater Res Express 2019;6:116561. [DOI: 10.1088/2053-1591/ab485e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
259 Maji R, Omolo CA, Agrawal N, Maduray K, Hassan D, Mokhtar C, Mackhraj I, Govender T. pH-Responsive Lipid–Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens. Mol Pharmaceutics 2019;16:4594-609. [DOI: 10.1021/acs.molpharmaceut.9b00713] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 4.7] [Reference Citation Analysis]
260 Lee NY, Ko WC, Hsueh PR. Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Front Pharmacol 2019;10:1153. [PMID: 31636564 DOI: 10.3389/fphar.2019.01153] [Cited by in Crossref: 88] [Cited by in F6Publishing: 129] [Article Influence: 29.3] [Reference Citation Analysis]
261 Arrúa EC, Seremeta KP, Bedogni GR, Okulik NB, Salomon CJ. Nanocarriers for effective delivery of benznidazole and nifurtimox in the treatment of chagas disease: A review. Acta Trop 2019;198:105080. [PMID: 31299283 DOI: 10.1016/j.actatropica.2019.105080] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
262 Martínez-Carmona M, Izquierdo-Barba I, Colilla M, Vallet-Regí M. Concanavalin A-targeted mesoporous silica nanoparticles for infection treatment. Acta Biomater 2019;96:547-56. [PMID: 31279160 DOI: 10.1016/j.actbio.2019.07.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 10.7] [Reference Citation Analysis]
263 de Dicastillo CL, Patiño C, Galotto MJ, Vásquez-Martínez Y, Torrent C, Alburquenque D, Pereira A, Escrig J. Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria. Beilstein J Nanotechnol 2019;10:1716-25. [PMID: 31501743 DOI: 10.3762/bjnano.10.167] [Cited by in Crossref: 12] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
264 Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as Promising Alternative in the Infection Treatment. Int J Mol Sci 2019;20:E3806. [PMID: 31382674 DOI: 10.3390/ijms20153806] [Cited by in Crossref: 47] [Cited by in F6Publishing: 62] [Article Influence: 15.7] [Reference Citation Analysis]
265 García-Villén F, Faccendini A, Aguzzi C, Cerezo P, Bonferoni MC, Rossi S, Grisoli P, Ruggeri M, Ferrari F, Sandri G, Viseras C. Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds. Int J Nanomedicine 2019;14:5051-60. [PMID: 31371946 DOI: 10.2147/IJN.S208713] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
266 Bucki R, Niemirowicz-Laskowska K, Deptuła P, Wilczewska AZ, Misiak P, Durnaś B, Fiedoruk K, Piktel E, Mystkowska J, Janmey PA. Susceptibility of microbial cells to the modified PIP2-binding sequence of gelsolin anchored on the surface of magnetic nanoparticles. J Nanobiotechnology 2019;17:81. [PMID: 31286976 DOI: 10.1186/s12951-019-0511-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
267 Rajivgandhi G, Maruthupandy M, Veeramani T, Quero F, Li W. Anti-ESBL investigation of chitosan/silver nanocomposites against carbapenem resistant Pseudomonas aeruginosa. International Journal of Biological Macromolecules 2019;132:1221-34. [DOI: 10.1016/j.ijbiomac.2019.03.238] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
268 Theuretzbacher U, Piddock LJ. Non-traditional Antibacterial Therapeutic Options and Challenges. Cell Host & Microbe 2019;26:61-72. [DOI: 10.1016/j.chom.2019.06.004] [Cited by in Crossref: 57] [Cited by in F6Publishing: 70] [Article Influence: 19.0] [Reference Citation Analysis]
269 Singh N, Paknikar KM, Rajwade J. Gene expression is influenced due to 'nano' and 'ionic' copper in pre-formed Pseudomonas aeruginosa biofilms. Environ Res 2019;175:367-75. [PMID: 31153105 DOI: 10.1016/j.envres.2019.05.034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
270 Siemer S, Westmeier D, Vallet C, Steinmann J, Buer J, Stauber RH, Knauer SK. REMOVED: Breaking resistance to nanoantibiotics by overriding corona-dependent inhibition using a pH-switch. Materials Today 2019;26:19-29. [DOI: 10.1016/j.mattod.2018.10.041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
271 Benoit DSW, Sims KR Jr, Fraser D. Nanoparticles for Oral Biofilm Treatments. ACS Nano 2019;13:4869-75. [PMID: 31033283 DOI: 10.1021/acsnano.9b02816] [Cited by in Crossref: 66] [Cited by in F6Publishing: 69] [Article Influence: 22.0] [Reference Citation Analysis]
272 Badetti E, Calgaro L, Falchi L, Bonetto A, Bettiol C, Leonetti B, Ambrosi E, Zendri E, Marcomini A. Interaction between Copper Oxide Nanoparticles and Amino Acids: Influence on the Antibacterial Activity. Nanomaterials (Basel) 2019;9:E792. [PMID: 31126084 DOI: 10.3390/nano9050792] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
273 Maniraj A, Kannan M, Rajarathinam K, Vivekanandhan S, Muthuramkumar S. Green Synthesis of Silver Nanoparticles and Their Effective Utilization in Fabricating Functional Surface for Antibacterial Activity Against Multi-Drug Resistant Proteus mirabilis. J Clust Sci 2019;30:1403-14. [DOI: 10.1007/s10876-019-01582-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
274 Abo-state MAM, Saleh YE, Ghareeb HM. Prevalence and sequence of aminoglycosides modifying enzymes genes among E.coli and Klebsiella species isolated from Egyptian hospitals. Journal of Radiation Research and Applied Sciences 2019;11:408-15. [DOI: 10.1016/j.jrras.2018.08.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
275 Madivoli ES, Kareru PG, Maina EG, Nyabola AO, Wanakai SI, Nyang’au JO. Biosynthesis of iron nanoparticles using Ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. SN Appl Sci 2019;1. [DOI: 10.1007/s42452-019-0511-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
276 Zyoud A, Alkowni R, Yousef O, Salman M, Hamdan S, Helal MH, Jaber SF, Hilal HS. Solar light-driven complete mineralization of aqueous gram-positive and gram-negative bacteria with ZnO photocatalyst. Solar Energy 2019;180:351-9. [DOI: 10.1016/j.solener.2019.01.034] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
277 Mansi A, Boccuni F, Iavicoli S. Nanomaterials as a new opportunity for protecting workers from biological risk. Ind Health 2019;57:668-75. [PMID: 30814393 DOI: 10.2486/indhealth.2018-0197] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
278 Singh V, Kumar V, Kashyap S, Singh AV, Kishore V, Sitti M, Saxena PS, Srivastava A. Graphene Oxide Synergistically Enhances Antibiotic Efficacy in Vancomycin-Resistant Staphylococcus aureus. ACS Appl Bio Mater 2019;2:1148-57. [DOI: 10.1021/acsabm.8b00757] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
279 Liao C, Li Y, Tjong SC. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci 2019;20:E449. [PMID: 30669621 DOI: 10.3390/ijms20020449] [Cited by in Crossref: 315] [Cited by in F6Publishing: 270] [Article Influence: 105.0] [Reference Citation Analysis]
280 Van Giau V, An SSA, Hulme J. Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des Devel Ther 2019;13:327-43. [PMID: 30705582 DOI: 10.2147/DDDT.S190577] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 15.0] [Reference Citation Analysis]
281 Hopf J, Waters M, Kalwajtys V, Carothers KE, Roeder RK, Shrout JD, Lee SW, Nallathamby PD. Phage-mimicking antibacterial core–shell nanoparticles. Nanoscale Adv 2019;1:4812-26. [DOI: 10.1039/c9na00461k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
282 Tomane S, López-maya E, Boujday S, Humblot V, Marrot J, Rabasso N, Castells-gil J, Sicard C, Dolbecq A, Mialane P, Vallée A. One-pot synthesis of a new generation of hybrid bisphosphonate polyoxometalate gold nanoparticles as antibiofilm agents. Nanoscale Adv 2019;1:3400-5. [DOI: 10.1039/c9na00401g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
283 Xiong X, Huang Y, Lin C, Liu XY, Lin Y. Recent advances in nanoparticulate biomimetic catalysts for combating bacteria and biofilms. Nanoscale 2019;11:22206-15. [DOI: 10.1039/c9nr05054j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 7.7] [Reference Citation Analysis]
284 Ditaranto N, Basoli F, Trombetta M, Cioffi N, Rainer A. Electrospun Nanomaterials Implementing Antibacterial Inorganic Nanophases. Applied Sciences 2018;8:1643. [DOI: 10.3390/app8091643] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
285 Ranfaing J, Dunyach-Remy C, Lavigne JP, Sotto A. Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) in reducing the motility and the biofilm formation of uropathogenic Escherichia coli. PLoS One 2018;13:e0202609. [PMID: 30138443 DOI: 10.1371/journal.pone.0202609] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]