BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pérez-Llarena FJ, Bou G. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance. Front Microbiol 2016;7:410. [PMID: 27065974 DOI: 10.3389/fmicb.2016.00410] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 7.6] [Reference Citation Analysis]
Number Citing Articles
1 Forbes JD, Knox NC, Ronholm J, Pagotto F, Reimer A. Metagenomics: The Next Culture-Independent Game Changer. Front Microbiol 2017;8:1069. [PMID: 28725217 DOI: 10.3389/fmicb.2017.01069] [Cited by in Crossref: 118] [Cited by in F6Publishing: 97] [Article Influence: 29.5] [Reference Citation Analysis]
2 Tsakou F, Jersie-Christensen R, Jenssen H, Mojsoska B. The Role of Proteomics in Bacterial Response to Antibiotics. Pharmaceuticals (Basel) 2020;13:E214. [PMID: 32867221 DOI: 10.3390/ph13090214] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
3 Flores-Treviño S, Garza-González E, Mendoza-Olazarán S, Morfín-Otero R, Camacho-Ortiz A, Rodríguez-Noriega E, Martínez-Meléndez A, Bocanegra-Ibarias P. Screening of biomarkers of drug resistance or virulence in ESCAPE pathogens by MALDI-TOF mass spectrometry. Sci Rep 2019;9:18945. [PMID: 31831867 DOI: 10.1038/s41598-019-55430-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
4 Ullah N, Hao L, Banga Ndzouboukou JL, Chen S, Wu Y, Li L, Borham Mohamed E, Hu Y, Fan X. Label-Free Comparative Proteomics of Differentially Expressed Mycobacterium tuberculosis Protein in Rifampicin-Related Drug-Resistant Strains. Pathogens 2021;10:607. [PMID: 34063426 DOI: 10.3390/pathogens10050607] [Reference Citation Analysis]
5 Kalule JB, Fortuin S, Calder B, Robberts L, Keddy KH, Nel AJM, Garnett S, Nicol M, Warner DF, Soares NC, Blackburn JM. Proteomic comparison of three clinical diarrhoeagenic drug-resistant Escherichia coli isolates grown on CHROMagar™STEC media. J Proteomics 2018;180:25-35. [PMID: 28887208 DOI: 10.1016/j.jprot.2017.09.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
6 Palma E, Tilocca B, Roncada P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int J Mol Sci 2020;21:E1914. [PMID: 32168903 DOI: 10.3390/ijms21061914] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 31.0] [Reference Citation Analysis]
7 Diao N, Yan G, Yang Y, Dong Y, Wang Y, Gu W. Comparative Proteomics of Extended-Spectrum Cephalosporin-Resistant Neisseria gonorrhoeae Isolates Demonstrates Altered Protein Synthesis, Metabolism, Substance Transport, and Membrane Permeability. Front Microbiol 2020;11:169. [PMID: 32140142 DOI: 10.3389/fmicb.2020.00169] [Reference Citation Analysis]
8 Dousti M, Manzano-Román R, Rashidi S, Barzegar G, Ahmadpour NB, Mohammadi A, Hatam G. A proteomic glimpse into the effect of antimalarial drugs on Plasmodium falciparum proteome towards highlighting possible therapeutic targets. Pathog Dis 2021;79:ftaa071. [PMID: 33202000 DOI: 10.1093/femspd/ftaa071] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Welker M, van Belkum A. One System for All: Is Mass Spectrometry a Future Alternative for Conventional Antibiotic Susceptibility Testing? Front Microbiol 2019;10:2711. [PMID: 31849870 DOI: 10.3389/fmicb.2019.02711] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
10 Correia S, Hébraud M, Poeta P, Capelo JL, Igrejas G. How combined multicomparative proteomic approaches can improve the understanding of quinolone resistance in Salmonella Typhimurium. Future Microbiology 2018;13:403-6. [DOI: 10.2217/fmb-2017-0250] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
11 Liu J, Huang Z, Ruan B, Wang H, Chen M, Rehman S, Wu P. Quantitative proteomic analysis reveals the mechanisms of polymyxin B toxicity to Escherichia coli. Chemosphere 2020;259:127449. [PMID: 32622246 DOI: 10.1016/j.chemosphere.2020.127449] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
12 Poetsch A, Marchesini MI. Proteomics of Brucella. Proteomes 2020;8:8. [PMID: 32331335 DOI: 10.3390/proteomes8020008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
13 Aljaafari MN, AlAli AO, Baqais L, Alqubaisy M, AlAli M, Molouki A, Ong-Abdullah J, Abushelaibi A, Lai KS, Lim SE. An Overview of the Potential Therapeutic Applications of Essential Oils. Molecules 2021;26:628. [PMID: 33530290 DOI: 10.3390/molecules26030628] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
14 Zheng M, Zhang R, Tian X, Zhou X, Pan X, Wong A. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Front Microbiol 2017;8:908. [PMID: 28579981 DOI: 10.3389/fmicb.2017.00908] [Cited by in Crossref: 52] [Cited by in F6Publishing: 35] [Article Influence: 13.0] [Reference Citation Analysis]
15 Willmann M, Peter S. Translational metagenomics and the human resistome: confronting the menace of the new millennium. J Mol Med (Berl) 2017;95:41-51. [PMID: 27766372 DOI: 10.1007/s00109-016-1478-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
16 Correia S, Hébraud M, Chafsey I, Chambon C, Viala D, Torres C, Caniça M, Capelo JL, Poeta P, Igrejas G. Subproteomic signature comparison of in vitro selected fluoroquinolone resistance and ciprofloxacin stress in Salmonella Typhimurium DT104B. Expert Rev Proteomics 2017;14:941-61. [PMID: 28871888 DOI: 10.1080/14789450.2017.1375856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Preena PG, Swaminathan TR, Rejish Kumar VJ, Bright Singh IS. Unravelling the menace: detection of antimicrobial resistance in aquaculture. Lett Appl Microbiol 2020;71:26-38. [PMID: 32248555 DOI: 10.1111/lam.13292] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Khan MM, Chattagul S, Tran BQ, Freiberg JA, Nita-Lazar A, Shirtliff ME, Sermswan RW, Ernst RK, Goodlett DR. Temporal proteomic profiling reveals changes that support Burkholderia biofilms. Pathog Dis 2019;77:ftz005. [PMID: 30759239 DOI: 10.1093/femspd/ftz005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
19 Wang S, Jiang L, Hu Q, Cui L, Zhu B, Fu X, Lai Q, Shao Z, Yang S. Characterization of Sulfurimonas hydrogeniphila sp. nov., a Novel Bacterium Predominant in Deep-Sea Hydrothermal Vents and Comparative Genomic Analyses of the Genus Sulfurimonas. Front Microbiol 2021;12:626705. [PMID: 33717015 DOI: 10.3389/fmicb.2021.626705] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Li H, Wang Y, Meng Q, Wang Y, Xia G, Xia X, Shen J. Comprehensive proteomic and metabolomic profiling of mcr-1-mediated colistin resistance in Escherichia coli. Int J Antimicrob Agents 2019;53:795-804. [PMID: 30811973 DOI: 10.1016/j.ijantimicag.2019.02.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
21 Shankar J, Tiwari S, Shishodia SK, Gangwar M, Hoda S, Thakur R, Vijayaraghavan P. Molecular Insights Into Development and Virulence Determinants of Aspergilli: A Proteomic Perspective. Front Cell Infect Microbiol 2018;8:180. [PMID: 29896454 DOI: 10.3389/fcimb.2018.00180] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
22 Buyuktimkin B, Zafar H, Saier MH Jr. Comparative genomics of the transportome of Ten Treponema species. Microb Pathog 2019;132:87-99. [PMID: 31029716 DOI: 10.1016/j.micpath.2019.04.034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
23 Šrajer Gajdošik M, Andjelković U, Gašo-sokač D, Pavlović H, Shevchuk O, Martinović T, Clifton J, Josić D. Proteomic analysis of food borne pathogens following the mode of action of the disinfectants based on pyridoxal oxime derivatives. Food Research International 2017;99:560-70. [DOI: 10.1016/j.foodres.2017.06.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
24 Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020;13:1785-806. [PMID: 32606829 DOI: 10.2147/IDR.S238446] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
25 Grenga L, Pible O, Armengaud J. Pathogen proteotyping: A rapidly developing application of mass spectrometry to address clinical concerns. Clinical Mass Spectrometry 2019;14:9-17. [DOI: 10.1016/j.clinms.2019.04.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
26 Ahmed F, Kumar G, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture. Comp Biochem Physiol Part D Genomics Proteomics 2019;32:100625. [PMID: 31639560 DOI: 10.1016/j.cbd.2019.100625] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Csicsay F, Flores-Ramirez G, Zuñiga-Navarrete F, Bartošová M, Fučíková A, Pajer P, Dresler J, Škultéty Ľ, Quevedo-Diaz M. Proteomic analysis of Rickettsia akari proposes a 44 kDa-OMP as a potential biomarker for Rickettsialpox diagnosis. BMC Microbiol 2020;20:200. [PMID: 32640994 DOI: 10.1186/s12866-020-01877-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Yılmaz Ç, Özcengiz G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochemical Pharmacology 2017;133:43-62. [DOI: 10.1016/j.bcp.2016.10.005] [Cited by in Crossref: 57] [Cited by in F6Publishing: 45] [Article Influence: 14.3] [Reference Citation Analysis]
29 Sanguinetti M, Posteraro B. Mass spectrometry applications in microbiology beyond microbe identification: progress and potential. Expert Review of Proteomics 2016;13:965-77. [DOI: 10.1080/14789450.2016.1231578] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
30 Sauvage S, Hardouin J. Exoproteomics for Better Understanding Pseudomonas aeruginosa Virulence. Toxins (Basel) 2020;12:E571. [PMID: 32899849 DOI: 10.3390/toxins12090571] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
31 Verma P, Tiwari M, Tiwari V. In silico high-throughput virtual screening and molecular dynamics simulation study to identify inhibitor for AdeABC efflux pump of Acinetobacter baumannii. J Biomol Struct Dyn 2018;36:1182-94. [PMID: 28393677 DOI: 10.1080/07391102.2017.1317025] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 9.0] [Reference Citation Analysis]
32 Chernov VM, Chernova OA, Mouzykantov AA, Lopukhov LL, Aminov RI. Omics of antimicrobials and antimicrobial resistance. Expert Opinion on Drug Discovery 2019;14:455-68. [DOI: 10.1080/17460441.2019.1588880] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
33 Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018;31:e00084-16. [PMID: 29618576 DOI: 10.1128/CMR.00084-16] [Cited by in Crossref: 72] [Cited by in F6Publishing: 33] [Article Influence: 24.0] [Reference Citation Analysis]