BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu Y, Chen X, Liu X. NETosis and Neutrophil Extracellular Traps in COVID-19: Immunothrombosis and Beyond. Front Immunol 2022;13:838011. [PMID: 35309344 DOI: 10.3389/fimmu.2022.838011] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Torres-Ruiz J, Lomelín-Gascón J, Lira Luna J, Vargas-Castro AS, Pérez-Fragoso A, Nuñez-Aguirre M, Alcalá-Carmona B, Absalón-Aguilar A, Balderas-Miranda JT, Maravillas-Montero JL, Mejía-Domínguez NR, Núñez-Álvarez C, Llorente L, Romero-Ramírez S, Sosa-Hernández VA, Cervantes-Díaz R, Juárez-Vega G, Meza-Sánchez D, Rull-Gabayet M, Martínez-Juárez LA, Morales L, López-López LN, Negrete-Trujillo JA, Falcón-Lezama JA, Valdez-Vázquez RR, Gallardo-Rincón H, Tapia-Conyer R, Gómez-Martín D. Novel clinical and immunological features associated with persistent post-acute sequelae of COVID-19 after six months of follow-up: a pilot study. Infect Dis (Lond) 2023;55:243-54. [PMID: 36637466 DOI: 10.1080/23744235.2022.2158217] [Reference Citation Analysis]
2 Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023;11. [PMID: 36851285 DOI: 10.3390/vaccines11020408] [Reference Citation Analysis]
3 Szymczak K, Pelletier MGH, Mackay JM, Reid D, Gaines PCW. CXCR2 Antagonist RIST4721 Acts as a Potent Chemotaxis Inhibitor of Mature Neutrophils Derived from Ex Vivo-Cultured Mouse Bone Marrow. Biomedicines 2023;11. [PMID: 36831016 DOI: 10.3390/biomedicines11020479] [Reference Citation Analysis]
4 Herrera VLM, Bosch NA, Lok JJ, Nguyen MQ, Lenae KA, deKay JT, Ryzhov SV, Seder DB, Ruiz-Opazo N, Walkey AJ. Circulating neutrophil extracellular trap (NET)-forming 'rogue' neutrophil subset, immunotype [DEspR+CD11b+], mediate multi-organ failure in COVID-19 - an observational study. Res Sq 2023:rs. [PMID: 36778407 DOI: 10.21203/rs.3.rs-2479844/v1] [Reference Citation Analysis]
5 Wadowski PP, Panzer B, Józkowicz A, Kopp CW, Gremmel T, Panzer S, Koppensteiner R. Microvascular Thrombosis as a Critical Factor in Severe COVID-19. Int J Mol Sci 2023;24. [PMID: 36768817 DOI: 10.3390/ijms24032492] [Reference Citation Analysis]
6 Benameur T, Frota Gaban SV, Giacomucci G, Filannino FM, Trotta T, Polito R, Messina G, Porro C, Panaro MA. The Effects of Curcumin on Inflammasome: Latest Update. Molecules 2023;28. [PMID: 36677800 DOI: 10.3390/molecules28020742] [Reference Citation Analysis]
7 Khreefa Z, Barbier MT, Koksal AR, Love G, Del Valle L. Pathogenesis and Mechanisms of SARS-CoV-2 Infection in the Intestine, Liver, and Pancreas. Cells 2023;12. [PMID: 36672197 DOI: 10.3390/cells12020262] [Reference Citation Analysis]
8 Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023;75:127099. [PMID: 36372013 DOI: 10.1016/j.jtemb.2022.127099] [Reference Citation Analysis]
9 Saito S, Kelel M. Oral administration of Lacticaseibacillus casei ATCC393 promotes angiogenesis by enhancing neutrophil activity in a murine hind-limb ischemia model. Biosci Microbiota Food Health 2023;42:94-9. [PMID: 36660599 DOI: 10.12938/bmfh.2022-038] [Reference Citation Analysis]
10 Chang K, Li Y, Qin Z, Zhang Z, Wang L, Yang Q, Geng J, Deng N, Chen S, Su B. Effect of extracorporeal hemoadsorption in critically ill patients with COVID-19: A narrative review. Front Immunol 2023;14:1074465. [PMID: 36817416 DOI: 10.3389/fimmu.2023.1074465] [Reference Citation Analysis]
11 Rizvi ZA, Babele P, Madan U, Sadhu S, Tripathy MR, Goswami S, Mani S, Dikshit M, Awasthi A. Pharmacological potential of Withania somnifera (L.) Dunal and Tinospora cordifolia (Willd.) Miers on the experimental models of COVID-19, T cell differentiation, and neutrophil functions. Front Immunol 2023;14:1138215. [PMID: 36960064 DOI: 10.3389/fimmu.2023.1138215] [Reference Citation Analysis]
12 Silva V, Radic M. COVID-19 Pathology Sheds Further Light on Balance between Neutrophil Proteases and Their Inhibitors. Biomolecules 2022;13. [PMID: 36671467 DOI: 10.3390/biom13010082] [Reference Citation Analysis]
13 Fortier M, Chea M, Aïn C, Loyens M, Boudemaghe T, Gris JC, Bouvier S. Direct blood fluorescence signal intensity of neutrophils (NEU-SFL): A predictive marker of death in hospitalized COVID-19 patients? Front Med (Lausanne) 2022;9:1062112. [PMID: 36619613 DOI: 10.3389/fmed.2022.1062112] [Reference Citation Analysis]
14 Wirth KJ, Löhn M. Orthostatic Intolerance after COVID-19 Infection: Is Disturbed Microcirculation of the Vasa Vasorum of Capacitance Vessels the Primary Defect? Medicina (Kaunas) 2022;58. [PMID: 36557009 DOI: 10.3390/medicina58121807] [Reference Citation Analysis]
15 Ciccosanti F, Antonioli M, Sacchi A, Notari S, Farina A, Beccacece A, Fusto M, Vergori A, D’offizi G, Taglietti F, Antinori A, Nicastri E, Marchioni L, Palmieri F, Ippolito G, Piacentini M, Agrati C, Fimia GM. Proteomic analysis identifies a signature of disease severity in the plasma of COVID-19 pneumonia patients associated to neutrophil, platelet and complement activation. Clin Proteom 2022;19:38. [DOI: 10.1186/s12014-022-09377-7] [Reference Citation Analysis]
16 Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.992384] [Reference Citation Analysis]
17 Sun Y, Zou Y, Wang H, Cui G, Yu Z, Ren Z. Immune response induced by novel coronavirus infection. Front Cell Infect Microbiol 2022;12. [DOI: 10.3389/fcimb.2022.988604] [Reference Citation Analysis]
18 Musiał K. Update on Innate Immunity in Acute Kidney Injury—Lessons Taken from COVID-19. IJMS 2022;23:12514. [DOI: 10.3390/ijms232012514] [Reference Citation Analysis]
19 Inal J, Paizuldaeva A, Terziu E. Therapeutic use of calpeptin in COVID-19 infection. Clin Sci (Lond) 2022;136:1439-47. [PMID: 36268783 DOI: 10.1042/CS20220638] [Reference Citation Analysis]
20 Zhukovskaya OV. Neutrophil extracellular traps in the pathogenesis of obstetric complications in COVID-19 (brief review). Bûlletenʹ fiziologii i patologii dyhaniâ 2022. [DOI: 10.36604/1998-5029-2022-85-143-150] [Reference Citation Analysis]
21 Butt A, Erkan D, Lee AI. COVID-19 and antiphospholipid antibodies. Best Pract Res Clin Haematol 2022;35:101402. [PMID: 36494152 DOI: 10.1016/j.beha.2022.101402] [Reference Citation Analysis]
22 de Souza Andrade MM, Leal VNC, Fernandes IG, Gozzi-silva SC, Beserra DR, Oliveira EA, Teixeira FME, Yendo TM, Sousa MDGT, Teodoro WR, Oliveira LDM, Alberca RW, Aoki V, Duarte AJS, Sato MN. Resveratrol Downmodulates Neutrophil Extracellular Trap (NET) Generation by Neutrophils in Patients with Severe COVID-19. Antioxidants 2022;11:1690. [DOI: 10.3390/antiox11091690] [Reference Citation Analysis]
23 Shafqat A, Abdul Rab S, Ammar O, Al Salameh S, Alkhudairi A, Kashir J, Alkattan K, Yaqinuddin A. Emerging role of neutrophil extracellular traps in the complications of diabetes mellitus. Front Med 2022;9. [DOI: 10.3389/fmed.2022.995993] [Reference Citation Analysis]
24 Torres-ruiz J, Lomelín-gascón J, Vargas-castro AS, Lira-luna J, Pérez-fragoso A, Tapia-conyer R, Nuñez-aguirre M, Alcalá-carmona B, Absalón-aguilar A, Maravillas-montero JL, Mejía-domínguez NR, Núñez-álvarez C, Rull-gabayet M, Llorente L, Romero-ramírez S, Sosa-hernández VA, Cervantes-díaz R, Juárez-vega G, Meza-sánchez DE, Martínez-juárez LA, Morales-juárez L, López-lópez LN, Negrete-trujillo JA, Falcón-lezama JA, Valdez-vázquez RR, Gallardo-rincón H, Gómez-martín D. Clinical and immunological features associated to the development of a sustained immune humoral response in COVID-19 patients: Results from a cohort study. Front Immunol 2022;13:943563. [DOI: 10.3389/fimmu.2022.943563] [Reference Citation Analysis]
25 Shirakawa K, Sano M. Neutrophils and Neutrophil Extracellular Traps in Cardiovascular Disease: An Overview and Potential Therapeutic Approaches. Biomedicines 2022;10:1850. [DOI: 10.3390/biomedicines10081850] [Reference Citation Analysis]
26 Wienkamp A, Erpenbeck L, Rossaint J. Platelets in the NETworks interweaving inflammation and thrombosis. Front Immunol 2022;13:953129. [DOI: 10.3389/fimmu.2022.953129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Batu ED, Sener S, Ozen S. COVID-19 associated pediatric vasculitis: A systematic review and detailed analysis of the pathogenesis. Semin Arthritis Rheum 2022;55:152047. [PMID: 35709649 DOI: 10.1016/j.semarthrit.2022.152047] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
28 Zhu Z, Shi J, Li L, Wang J, Zhao Y, Ma H. Therapy Targets SARS-CoV-2 Infection-Induced Cell Death. Front Immunol 2022;13:870216. [PMID: 35655782 DOI: 10.3389/fimmu.2022.870216] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Watson O, Pillai S, Howard M, Cezar-Zaldua J, Whitley J, Burgess B, Lawrence M, Hawkins K, Morris K, Evans PA. Impaired fibrinolysis in severe Covid-19 infection is detectable in early stages of the disease. Clin Hemorheol Microcirc 2022. [PMID: 35694917 DOI: 10.3233/CH-221491] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Vojdani A, Vojdani E, Rosenberg AZ, Shoenfeld Y. The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. Pathophysiology 2022;29:243-80. [DOI: 10.3390/pathophysiology29020020] [Reference Citation Analysis]
31 Rizvi ZA, Babele P, Sadhu S, Madan U, Tripathy MR, Goswami S, Mani S, Kumar S, Awasthi A, Dikshit M. Prophylactic treatment of Glycyrrhiza glabra mitigates COVID-19 pathology through inhibition of pro-inflammatory cytokines in the hamster model and NETosis.. [DOI: 10.1101/2022.05.16.492112] [Reference Citation Analysis]
32 Serrano M, Espinosa G, Serrano A, Cervera R. Antigens and Antibodies of the Antiphospholipid Syndrome as New Allies in the Pathogenesis of COVID-19 Coagulopathy. Int J Mol Sci 2022;23:4946. [PMID: 35563337 DOI: 10.3390/ijms23094946] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Vollbracht C, Kraft K. Oxidative Stress and Hyper-Inflammation as Major Drivers of Severe COVID-19 and Long COVID: Implications for the Benefit of High-Dose Intravenous Vitamin C. Front Pharmacol 2022;13:899198. [DOI: 10.3389/fphar.2022.899198] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]