BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kgatle MM, Lawal IO, Mashabela G, Boshomane TMG, Koatale PC, Mahasha PW, Ndlovu H, Vorster M, Rodrigues HG, Zeevaart JR, Gordon S, Moura-Alves P, Sathekge MM. COVID-19 Is a Multi-Organ Aggressor: Epigenetic and Clinical Marks. Front Immunol 2021;12:752380. [PMID: 34691068 DOI: 10.3389/fimmu.2021.752380] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Dey A, Vaishak K, Deka D, Radhakrishnan AK, Paul S, Shanmugam P, Daniel AP, Pathak S, Duttaroy AK, Banerjee A. Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: an updated review. Infection 2023;:1-16. [PMID: 36906872 DOI: 10.1007/s15010-023-02017-8] [Reference Citation Analysis]
2 Brest P, Mograbi B, Gal J, Hofman P, Milano G. Host genetic variability and determinants of severe COVID-19. Trends Genet 2023;39:169-71. [PMID: 36379742 DOI: 10.1016/j.tig.2022.10.003] [Reference Citation Analysis]
3 Salem S, Mosaad R, Lotfy R, Elbadry M. Altered expression of DNA methyltransferases and methylation status of the TLR4 and TNF-α promoters in COVID-19. Arch Virol 2023;168:95. [PMID: 36840831 DOI: 10.1007/s00705-023-05722-9] [Reference Citation Analysis]
4 Sharma SB, Melvin WJ, Audu CO, Bame M, Rhoads N, Wu W, Kanthi Y, Knight JS, Adili R, Holinstat MA, Wakefield TW, Henke PK, Moore BB, Gallagher KA, Obi AT. The histone methyltransferase MLL1/KMT2A in monocytes drives coronavirus-associated coagulopathy and inflammation. Blood 2023;141:725-42. [PMID: 36493338 DOI: 10.1182/blood.2022015917] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Ligi D, Lo Sasso B, Henry BM, Ciaccio M, Lippi G, Plebani M, Mannello F. Deciphering the role of monocyte and monocyte distribution width (MDW) in COVID-19: an updated systematic review and meta-analysis. Clin Chem Lab Med 2023. [PMID: 36626568 DOI: 10.1515/cclm-2022-0936] [Reference Citation Analysis]
6 Sen R, Sarkar S, Chlamydas S, Garbati M, Barnes C. Epigenetic features, methods, and implementations associated with COVID-19. Omics Approaches and Technologies in COVID-19 2023. [DOI: 10.1016/b978-0-323-91794-0.00008-1] [Reference Citation Analysis]
7 Zettinig G. Schilddrüse und SARS-CoV-2. J Klin Endokrinol Stoffw 2022. [DOI: 10.1007/s41969-022-00173-0] [Reference Citation Analysis]
8 Moatar AI, Chis AR, Marian C, Sirbu I. Gene Network Analysis of the Transcriptome Impact of SARS-CoV-2 Interacting MicroRNAs in COVID-19 Disease. IJMS 2022;23:9239. [DOI: 10.3390/ijms23169239] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Lane JB, Stahly S, Sills A, Wagner SD, Zimmerman S, Martin D, Sukpraprut-braaten S. Examination of Cutaneous Changes Among Patients Following SARS-CoV-2 Infection. Cureus 2022. [DOI: 10.7759/cureus.27052] [Reference Citation Analysis]
10 Ligi D, Giglio RV, Henry BM, Lippi G, Ciaccio M, Plebani M, Mannello F. What is the impact of circulating histones in COVID-19: a systematic review. Clinical Chemistry and Laboratory Medicine (CCLM) 2022;0. [DOI: 10.1515/cclm-2022-0574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Verlander Z, Cummings A, Brown HM, Sen R. Advances in understanding epigenetic impacts on dendritic cell regulation and function. Clinical and Translational Dis 2022;2. [DOI: 10.1002/ctd2.53] [Reference Citation Analysis]
12 Petersen DC, Steyl C, Scholtz D, Baker B, Abdullah I, Uren C, Möller M; and for The COVID-19 Host Genetics Project. African Genetic Representation in the Context of SARS-CoV-2 Infection and COVID-19 Severity. Front Genet 2022;13:909117. [PMID: 35620464 DOI: 10.3389/fgene.2022.909117] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Sarkar S, Sen R. Insights into Cardiovascular Defects and Cardiac Epigenome in the Context of COVID-19. Epigenomes 2022;6:13. [PMID: 35645252 DOI: 10.3390/epigenomes6020013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ferrucci V, de Antonellis P, Quarantelli F, Asadzadeh F, Bibbò F, Siciliano R, Sorice C, Pisano I, Izzo B, Di Domenico C, Boccia A, Vargas M, Pierri B, Viscardi M, Brandi S, Fusco G, Cerino P, De Pietro L, Furfaro C, Napolitano LA, Paolella G, Festa L, Marzinotto S, Conte MC, Gentile I, Servillo G, Curcio F, de Cristofaro T, Broccolo F, Capoluongo E, Zollo M. Loss of Detection of sgN Precedes Viral Abridged Replication in COVID-19-Affected Patients-A Target for SARS-CoV-2 Propagation. Int J Mol Sci 2022;23:1941. [PMID: 35216056 DOI: 10.3390/ijms23041941] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Jit BP, Bera R, Sharma A. Mechanistic Basis of Regulation of Host Epigenetic Landscape and Its Association with Immune Function: A COVID19 Perspective. Epigenetics and Anticipation 2022. [DOI: 10.1007/978-3-031-17678-4_5] [Reference Citation Analysis]
16 Odilov A, Volkov A, Abdullaev A, Gasanova T, Lipina T, Babichenko I. COVID-19: Multiorgan Dissemination of SARS-CoV-2 Is Driven by Pulmonary Factors. Viruses 2021;14:39. [PMID: 35062243 DOI: 10.3390/v14010039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]