BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dong R, Chu Z, Yu F, Zha Y. Contriving Multi-Epitope Subunit of Vaccine for COVID-19: Immunoinformatics Approaches. Front Immunol 2020;11:1784. [PMID: 32849643 DOI: 10.3389/fimmu.2020.01784] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Bose T, Pant N, Pinna NK, Bhar S, Dutta A, Mande SS. Does immune recognition of SARS-CoV2 epitopes vary between different ethnic groups? Virus Res 2021;305:198579. [PMID: 34560183 DOI: 10.1016/j.virusres.2021.198579] [Reference Citation Analysis]
2 Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. Lessons Learned from Cutting-Edge Immunoinformatics on Next-Generation COVID-19 Vaccine Research. Int J Pept Res Ther 2021;:1-9. [PMID: 34276266 DOI: 10.1007/s10989-021-10254-4] [Reference Citation Analysis]
3 Singh N, Rai SN, Singh V, Singh MP. Molecular characterization, pathogen-host interaction pathway and in silico approaches for vaccine design against COVID-19. J Chem Neuroanat 2020;110:101874. [PMID: 33091590 DOI: 10.1016/j.jchemneu.2020.101874] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Nel AE, Miller JF. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS Nano 2021;15:5793-818. [PMID: 33793189 DOI: 10.1021/acsnano.1c01845] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
5 Yu M, Zhu Y, Li Y, Chen Z, Li Z, Wang J, Li Z, Zhang F, Ding J. Design of a Recombinant Multivalent Epitope Vaccine Based on SARS-CoV-2 and Its Variants in Immunoinformatics Approaches. Front Immunol 2022;13:884433. [DOI: 10.3389/fimmu.2022.884433] [Reference Citation Analysis]
6 Feng Y, Jiang H, Qiu M, Liu L, Zou S, Li Y, Guo Q, Han N, Sun Y, Wang K, Lu L, Zhuang X, Zhang S, Chen S, Mo F. Multi-Epitope Vaccine Design Using an Immunoinformatic Approach for SARS-CoV-2. Pathogens 2021;10:737. [PMID: 34208061 DOI: 10.3390/pathogens10060737] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Bukhari SNH, Jain A, Haq E, Mehbodniya A, Webber J. Ensemble Machine Learning Model to Predict SARS-CoV-2 T-Cell Epitopes as Potential Vaccine Targets. Diagnostics (Basel) 2021;11:1990. [PMID: 34829338 DOI: 10.3390/diagnostics11111990] [Reference Citation Analysis]
8 Sadat SM, Aghadadeghi MR, Yousefi M, Khodaei A, Sadat Larijani M, Bahramali G. Bioinformatics Analysis of SARS-CoV-2 to Approach an Effective Vaccine Candidate Against COVID-19. Mol Biotechnol 2021;63:389-409. [PMID: 33625681 DOI: 10.1007/s12033-021-00303-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
9 Uttamrao PP, Sathyaseelan C, Patro LPP, Rathinavelan T. Revelation of Potent Epitopes Present in Unannotated ORF Antigens of SARS-CoV-2 for Epitope-Based Polyvalent Vaccine Design Using Immunoinformatics Approach. Front Immunol 2021;12:692937. [PMID: 34497604 DOI: 10.3389/fimmu.2021.692937] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Soltan MA, Eldeen MA, Elbassiouny N, Mohamed I, El-Damasy DA, Fayad E, Abu Ali OA, Raafat N, Eid RA, Al-Karmalawy AA. Proteome Based Approach Defines Candidates for Designing a Multitope Vaccine against the Nipah Virus. Int J Mol Sci 2021;22:9330. [PMID: 34502239 DOI: 10.3390/ijms22179330] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Khalid K, Irum S, Ullah SR, Andleeb S. In-Silico Vaccine Design Based on a Novel Vaccine Candidate Against Infections Caused by Acinetobacter baumannii. Int J Pept Res Ther 2022;28:16. [PMID: 34873398 DOI: 10.1007/s10989-021-10316-7] [Reference Citation Analysis]
12 Kumar N, Sood D, Chandra R. Design and optimization of a subunit vaccine targeting COVID-19 molecular shreds using an immunoinformatics framework. RSC Adv 2020;10:35856-72. [DOI: 10.1039/d0ra06849g] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
13 Maleki A, Russo G, Parasiliti Palumbo GA, Pappalardo F. In silico design of recombinant multi-epitope vaccine against influenza A virus. BMC Bioinformatics 2022;22:617. [PMID: 35109785 DOI: 10.1186/s12859-022-04581-6] [Reference Citation Analysis]
14 Akbay B, Abidi SH, Ibrahim MAA, Mukhatayev Z, Ali S. Multi-Subunit SARS-CoV-2 Vaccine Design Using Evolutionarily Conserved T- and B- Cell Epitopes. Vaccines (Basel) 2021;9:702. [PMID: 34206865 DOI: 10.3390/vaccines9070702] [Reference Citation Analysis]
15 Lim HX, Masomian M, Khalid K, Kumar AU, Macary PA, Poh CL. Identification of B-Cell Epitopes for Eliciting Neutralizing Antibodies against the SARS-CoV-2 Spike Protein through Bioinformatics and Monoclonal Antibody Targeting. IJMS 2022;23:4341. [DOI: 10.3390/ijms23084341] [Reference Citation Analysis]
16 Rezaei S, Sefidbakht Y, Uskoković V. Tracking the pipeline: immunoinformatics and the COVID-19 vaccine design. Brief Bioinform 2021:bbab241. [PMID: 34219142 DOI: 10.1093/bib/bbab241] [Reference Citation Analysis]
17 Adam KM. Immunoinformatics approach for multi-epitope vaccine design against structural proteins and ORF1a polyprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Trop Dis Travel Med Vaccines 2021;7:22. [PMID: 34238372 DOI: 10.1186/s40794-021-00147-1] [Reference Citation Analysis]
18 Ghosh SK, Weinberg A. Ramping Up Antimicrobial Peptides Against Severe Acute Respiratory Syndrome Coronavirus-2. Front Mol Biosci 2021;8:620806. [PMID: 34235176 DOI: 10.3389/fmolb.2021.620806] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Obaidullah AJ, Alanazi MM, Alsaif NA, Albassam H, Almehizia AA, Alqahtani AM, Mahmud S, Sami SA, Emran TB. Immunoinformatics-guided design of a multi-epitope vaccine based on the structural proteins of severe acute respiratory syndrome coronavirus 2. RSC Adv 2021;11:18103-21. [DOI: 10.1039/d1ra02885e] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Pritam M, Singh G, Kumar R, Singh SP. Screening of potential antigens from whole proteome and development of multi-epitope vaccine against Rhizopus delemar using immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2022.2028676] [Reference Citation Analysis]
21 Barghash RF, Fawzy IM, Chandrasekar V, Singh AV, Katha U, Mandour AA. In Silico Modeling as a Perspective in Developing Potential Vaccine Candidates and Therapeutics for COVID-19. Coatings 2021;11:1273. [DOI: 10.3390/coatings11111273] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Yılmaz Çolak Ç. Computational Design of a Multi-epitope Vaccine Against Clostridium chauvoei: An Immunoinformatics Approach. Int J Pept Res Ther 2021;:1-11. [PMID: 34493934 DOI: 10.1007/s10989-021-10279-9] [Reference Citation Analysis]
23 Ahmad S, Waheed Y, Ismail S, Abbasi SW, Najmi MH. A computational study to disclose potential drugs and vaccine ensemble for COVID-19 conundrum. J Mol Liq 2021;324:114734. [PMID: 33199930 DOI: 10.1016/j.molliq.2020.114734] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Shams M, Nourmohammadi H, Majidiani H, Shariatzadeh SA, Asghari A, Fatollahzadeh M, Irannejad H. Engineering a multi-epitope vaccine candidate against Leishmania infantum using comprehensive Immunoinformatics methods. Biologia (Bratisl) 2021;:1-13. [PMID: 34866641 DOI: 10.1007/s11756-021-00934-3] [Reference Citation Analysis]
25 Sohail MS, Ahmed SF, Quadeer AA, McKay MR. In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives. Adv Drug Deliv Rev 2021;171:29-47. [PMID: 33465451 DOI: 10.1016/j.addr.2021.01.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 33.0] [Reference Citation Analysis]
26 Fadaka AO, Sibuyi NRS, Martin DR, Goboza M, Klein A, Madiehe AM, Meyer M. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Sci Rep 2021;11:19707. [PMID: 34611250 DOI: 10.1038/s41598-021-99227-7] [Reference Citation Analysis]
27 Aghamirza Moghim Aliabadi H, Eivazzadeh‐keihan R, Beig Parikhani A, Fattahi Mehraban S, Maleki A, Fereshteh S, Bazaz M, Zolriasatein A, Bozorgnia B, Rahmati S, Saberi F, Yousefi Najafabadi Z, Damough S, Mohseni S, Salehzadeh H, Khakyzadeh V, Madanchi H, Kardar GA, Zarrintaj P, Saeb MR, Mozafari M. COVID‐19: A systematic review and update on prevention, diagnosis, and treatment. MedComm 2022;3. [DOI: 10.1002/mco2.115] [Reference Citation Analysis]
28 Yu P, Zhu Y, Tan L, Xu Z, Lu C, Guan X. Immunoinformatics Construction of B Cell Epitope-Based Hypoallergenic Der f 34 Vaccine for Immunotherapy of House Dust Mite Allergy. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-021-10337-2] [Reference Citation Analysis]
29 Vakili B, Bagheri A, Negahdaripour M. Deep survey for designing a vaccine against SARS-CoV-2 and its new mutations. Biologia (Bratisl) 2021;:1-12. [PMID: 34421121 DOI: 10.1007/s11756-021-00866-y] [Reference Citation Analysis]
30 Shah JN, Guo GQ, Krishnan A, Ramesh M, Katari NK, Shahbaaz M, Abdellattif MH, Singh SK, Dua K. Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19. Therapie 2021:S0040-5957(21)00204-3. [PMID: 34689960 DOI: 10.1016/j.therap.2021.09.007] [Reference Citation Analysis]
31 Vivekanandam R, Rajagopalan K, Jeevanandam M, Ganesan H, Jagannathan V, Selvan Christyraj JD, Kalimuthu K, Selvan Christyraj JRS, Mohan M. Designing of cytotoxic T lymphocyte-based multi-epitope vaccine against SARS-CoV2: a reverse vaccinology approach. J Biomol Struct Dyn 2021;:1-16. [PMID: 34696708 DOI: 10.1080/07391102.2021.1993338] [Reference Citation Analysis]
32 Dey J, Mahapatra SR, Raj TK, Kaur T, Jain P, Tiwari A, Patro S, Misra N, Suar M. Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathog 2022;14:21. [PMID: 35624464 DOI: 10.1186/s13099-022-00495-z] [Reference Citation Analysis]
33 Nasar S, Nasar Z, Iftikhar S. A novel strategy for developing a tetravalent vaccine (dvac) against dengue utilizing conserved regions from all DENV proteins. Microb Pathog 2022;:105447. [PMID: 35181476 DOI: 10.1016/j.micpath.2022.105447] [Reference Citation Analysis]
34 Mitra D, Paul M, Thatoi H, Mohapatra PKD. Study of potentiality of dexamethasone and its derivatives against Covid-19. J Biomol Struct Dyn 2021;:1-11. [PMID: 34182880 DOI: 10.1080/07391102.2021.1942210] [Reference Citation Analysis]
35 Chen Y, Lin J, Zhao Y, Ma X, Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B 2021;22:609-32. [PMID: 34414698 DOI: 10.1631/jzus.B2000808] [Reference Citation Analysis]
36 Viana Invenção MDC, Melo ARDS, de Macêdo LS, da Costa Neves TSP, de Melo CML, Cordeiro MN, de Aragão Batista MV, de Freitas AC. Development of synthetic antigen vaccines for COVID-19. Hum Vaccin Immunother 2021;:1-16. [PMID: 34613880 DOI: 10.1080/21645515.2021.1974288] [Reference Citation Analysis]
37 Xu Z, Qu H, Ren Y, Gong Z, Ri HJ, Zhang F, Chen X, Zhu W, Shao S, Chen X. Update on the COVID-19 Vaccine Research Trends: A Bibliometric Analysis. Infect Drug Resist 2021;14:4237-47. [PMID: 34703250 DOI: 10.2147/IDR.S335745] [Reference Citation Analysis]
38 Sumon TA, Hussain MA, Hasan MT, Hasan M, Jang WJ, Bhuiya EH, Chowdhury AAM, Sharifuzzaman SM, Brown CL, Kwon HJ, Lee EW. A Revisit to the Research Updates of Drugs, Vaccines, and Bioinformatics Approaches in Combating COVID-19 Pandemic. Front Mol Biosci 2020;7:585899. [PMID: 33569389 DOI: 10.3389/fmolb.2020.585899] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Hwang W, Lei W, Katritsis NM, MacMahon M, Chapman K, Han N. Current and prospective computational approaches and challenges for developing COVID-19 vaccines. Adv Drug Deliv Rev 2021;172:249-74. [PMID: 33561453 DOI: 10.1016/j.addr.2021.02.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
40 Fathollahi M, Fathollahi A, Motamedi H, Moradi J, Alvandi A, Abiri R. In silico vaccine design and epitope mapping of New Delhi metallo-beta-lactamase (NDM): an immunoinformatics approach. BMC Bioinformatics 2021;22:458. [PMID: 34563132 DOI: 10.1186/s12859-021-04378-z] [Reference Citation Analysis]
41 Kumar P, Lata S, Shankar UN, Akif M. Immunoinformatics-Based Designing of a Multi-Epitope Chimeric Vaccine From Multi-Domain Outer Surface Antigens of Leptospira. Front Immunol 2021;12:735373. [PMID: 34917072 DOI: 10.3389/fimmu.2021.735373] [Reference Citation Analysis]
42 Zhuang S, Tang L, Dai Y, Feng X, Fang Y, Tang H, Jiang P, Wu X, Fang H, Chen H. Bioinformatic prediction of immunodominant regions in spike protein for early diagnosis of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). PeerJ 2021;9:e11232. [PMID: 33889450 DOI: 10.7717/peerj.11232] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Madlala T, Adeleke VT, Fatoba AJ, Okpeku M, Adeniyi AA, Adeleke MA. Designing multiepitope-based vaccine against Eimeria from immune mapped protein 1 (IMP-1) antigen using immunoinformatic approach. Sci Rep 2021;11:18295. [PMID: 34521964 DOI: 10.1038/s41598-021-97880-6] [Reference Citation Analysis]
44 Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022;13:830497. [DOI: 10.3389/fimmu.2022.830497] [Reference Citation Analysis]
45 Al Zamane S, Nobel FA, Jebin RA, Amin MB, Somadder PD, Antora NJ, Hossain MI, Islam MJ, Ahmed K, Moni MA. Development of an in silico multi-epitope vaccine against SARS-COV-2 by précised immune-informatics approaches. Inform Med Unlocked 2021;27:100781. [PMID: 34746365 DOI: 10.1016/j.imu.2021.100781] [Reference Citation Analysis]